केंद्रीय विद्यालय संगठन क्षेत्रीय कार्यालय रायपुर
Kendriya Vidyalaya Sangathan Regional Office Raipur

केन्द्रीय विद्यालय संगठन

Multiple Choice Question Bank [MCQ] Term - I

MATHEMATICS [041]

Based on Latest CBSE Exam Pattern for the Session 2021-22

केंद्रीय विद्यालय संगठन क्षेत्रीय कार्यालय रायपुर
 Kendriya Vidyalaya Sangathan Regional Office Raipur

MESSAGE FROM DUPUTY COMMISSIONER

It is a matter of great pleasure for me to publish study material for different subjects of classes X and XII for Raipur Region. Getting acquainted and familiarized with the recent changes in curriculum and assessment process made by CBSE vide Circular No. 51 and 53 issued in the month of July 2021 will help students to prepare themselves better for the examination. Sound and deeper knowledge of the Units and Chapters is must for grasping the concepts, understanding the questions. Study materials help in making suitable and effective notes for quick revision just before the examination.

Due to the unprecedented circumstances of COVID-19 pandemic the students and the teachers are getting very limited opportunity to interact face to face in the classes. In such a situation the supervised and especially prepared value points will help the students to develop their understanding and analytical skills together. The students will be benefitted immensely after going through the question bank and practice papers. The study materials will build a special bond and act as connecting link between the teachers and the students as both can undertake a guided and experiential learning simultaneously. It will help the students develop the habit of exploring and analyzing the Creative \& Critical Thinking Skills. The new concepts introduced in the question pattern related to case study, reasoning and ascertain will empower the students to take independent decision on different situational problems. The different study materials are designed in such a manner to help the students in their selflearning pace. It emphasizes the great pedagogical dictum that 'everything can be learnt but nothing can be taught'. The self-motivated learning as well as supervised classes will together help them achieve the new academic heights.

I would like to extend my sincere gratitude to all the principals and the teachers who have relentlessly striven for completion of the project of preparing study materials for all the subjects. Their enormous contribution in making this project successful is praiseworthy.

Happy learning and best of luck!

Vinod Kumar
(Deputy Commissioner)

केंद्रीय विद्यालय संगठन क्षेत्रीय कार्यालय रायपुर

Kendriya Vidyalaya Sangathan Regional Office Raipur

CONTENT TEAM

Shri JITENDRA KUMAR, PGT MATHS KV DANTEWADA Shri
ROHIT SAHU, PGT MATHS KV KIRANDUL
Shri DP CHAUBEY, PGTMATHS KV JHAGRAKHAND Shri
PRAVESHKUMAR,PGTMATHSKVCHIRMIRI
ShriUKKURREY,PGTMATHSKV No.1(Shift-1)RAIPUR Mrs T
PANIGRAHI,PGT MATHS KV RAIGARH
ShriKKJHA,PGTMATHSKVNo.2RAIPUR Shri RK
TRIPATHI, PGT MATHS KV CISF BHILAI
Shri T P CHAURASIYA, PGT MATHS KV AMBIKAPUR
ShriSRIJAN SINGH, PGTMATHS KV BAIKUNTHPUR

COMPILED BY

INDEX

S. NO.	NAME OF THE TOPIC	PAGE NO.
1	RELATIONS AND FUNCTIONS	$4-10$
2	INVERSETRIGONOMETRIC	$\mathbf{1 0 - 1 6}$
3	FUNCTIONS	$\mathbf{1 6 - 2 3}$
4	MATRICES	$\mathbf{D E T E R M I N A N T S}$
5	CONTINUITYAND DIFFERENTIABILITY	$31-36$
6	APPLICATION OF DERIVATIVES	$37-46$
7	LINEAR PROGRAMMING	$46-49$
8	ANSWERS	$49-58$

RELATIONS AND FUNCTIONS

MULTIPLE CHOICE QUESTIONS

Question 1.The relation R on the set $A=\{1,2\}$ given by $R=\{(1,1),(12),(22),(23),(3,3)\}$ is
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence

Question 2.Let $\mathrm{f}: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-2$. Choose the correct answer.
a) f is one-one onto b)f is many one onto
c)f is one-one but not onto d)f is neither one-one nor onto

Question 3. Let R be a relation defined on Z as $R=\left\{(a, b) ; a^{2}+b^{2}=25\right\}$, the domain of R is;
(a) $\{3,4,5\}$ (b) $\{0,3,4,5\}$ (c) $\{0,3,4,5,-3,-4,-5\}$ (d) none

Question 4.letR be the relation in the set N given by $R=\{(a, b): a=b-2, b>6\}$.Choose the correct answer.
(a) $(2,4) € R$
(b) $(3,8)$
(c) $(6,8) € R$
(d) $(8,10) € R$

Question 5. Set A has 3 elements and set B has 4 elements. Then the number of injective functions that can be defined from set A to set B is
(a) 144
(b) 12
(c) 24
(d) 64

Question 6.Let R be a relation on set of lines as $L_{1} R L_{2}$ if L_{1} is perpendicular to L_{2}. Then
a) R is Reflexive
b) R is transitive
c) R is symmetric
d) R is an equivalence relation

Question 7.Let $f: R \rightarrow R$ is defined as $f(x)=3 x$ then f is
a) f is one-one and onto
b) f is one-one but not onto
c) f is many-one
d) f is neither one-one nor onto

Question 8.A Relation from A to B is an arbitrary subset of:
a) $A x B$
b) $B x B c) A x A$
d) $B \times B$

Question 9.Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as $a R b$ if a is congruent to $b \forall a, b \in T$. Then R is
(a) reflexive but not transitive
(b) transitive but not symmetric
(c) equivalence
(d) None of these

Question 10.The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are
(a) 1
(b) 2
(c) 3
(d) 5

Question 11.Let us define a relation R in R as $a R b$ if $a \geq b$. Then R is
(a) an equivalence relation
(b) reflexive, transitive but not symmetric
(c) symmetric, transitive but not reflexive
(d) neither transitive nor reflexive but symmetric

Question 12.Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$. Then R is
(a) reflexive but not symmetric
(b) reflexive but not transitive
(c) symmetric and transitive
(d) neither symmetric, nor transitive

Question 13.Which of the following functions from Z into Z are bijective?
(a) $f(x)=x^{3}$
(b) $f(x)=x+2$
(c) $f(x)=2 x+1$
(d) $f(x)=x^{2}+1$

Question 14.Let R be a relation on the set N of natural numbers denoted by $n R m \Leftrightarrow n$ is a factor of m (i.e. $n \mid$ m). Then, R is
(a) Reflexive and symmetric
(b) Transitive and symmetric
(c) Equivalence
(d) Reflexive, transitive but not symmetric

Question 15.Let $S=\{1,2,3,4,5\}$ and let $A=S \times S$. Define the relation R on A as follows:
(a, b) $R(c, d)$ iff $a d=c b$. Then, R is
(a) reflexive only
(b) Symmetric only
(c) Transitive only
(d) Equivalence relation

Question 16. Let $X=\{-1,0,1\}, Y=\{0,2\}$ and a function $f: X \rightarrow Y$ defined by $y=2 x^{4}$, is
(a) one-one onto
(b) one-one into
(c) many-one onto
(d) many-one into

Question 17. Let $A=R-\{3\}, B=R-\{1\}$. Let $f: A \rightarrow B$ be defined by $f(x)=(x-2) /(x-3)$. Then,
(a) f is bijective
(b) f is one-one but not onto
(c) f is onto but not one-one
(d) None of these

Question 18. The mapping $f: N \rightarrow N$ is given by $f(n)=1+n^{2}, n \in N$ when N is the set of natural numbers is
(a) one-one and onto
(b) onto but not one-one
(c) one-one but not onto
(d) neither one-one nor onto

Question 19.The function $f: R \rightarrow R$ given by $f(x)=x^{3}-1$ is
(a) a one-one function
(b) an onto function
(c) a bijection
(d) neither one-one nor onto

Question 20.Let $\mathrm{f}:[0, \infty) \rightarrow[0,2]$ be defined by $f(x)=2 x / 1+x$, then f is
(a) one-one but not onto
(b) onto but not one-one
(c) both one-one and onto
(d) neither one-one nor onto

Question 21.If N be the set of all-natural numbers, consider $f: N \rightarrow N$ such that $f(x)=2 x, \forall x \in N$, then f is
(a) one-one onto
(b) one-one into
(c) many-one onto
(d) None of these

Question 22.Let $A=\{x:-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ is a function defined by $f(x)=x|x|$ then f is
(a) a bijection
(b) injection but not surjection
(c) surjection but not injection
(d) neither injection nor surjection

Question 23.Let $f: R \rightarrow R$ be a function defined by $f(x)=x^{3}+4$, then f is
(a) injective
(b) surjective
(c) bijective
(d) none of these

Question 24. Let R be a relation on the set L of lines defined by $l_{1} R l_{2}$ if l_{1} is perpendicular to l_{2}, then relation R is
(a) reflexive and symmetric
(b) symmetric and transitive
(c) equivalence relation
(d) symmetric

Question 25. Given set $A=\{1,2,3\}$ and a relation $R=\{(1,2),(2,1)\}$, the relation R will be
(a) reflexive if $(1,1)$ is added
(b) symmetric if $(2,3)$ is added
(c) transitive if $(1,1)$ is added
(d) symmetric if $(3,2)$ is added

Question 26.Given set $A=\{a, b, c)$. An identity relation in set A is
(a) $R=\{(a, b),(a, c)\}$
(b) $R=\{(a, a),(b, b),(c, c)\}$
(c) $R=\{(a, a),(b, b),(c, c),(a, c)\}$
(d) $R=\{(c, a),(b, a),(a, a)\}$

Question 27.Set A has 3 elements and the set B has 4 elements. Then the number of injective functions that can be defined from set A to set B is
(a) 144
(b) 12
(c) 24
(d) 64

CASE STUDY QUESTIONS

CASE STUDY-1

A relation R on a set A is said to be an equivalence relation on A if it is

- Reflexive i.e., $(a, a) \in R \forall a \in A$.
- Symmetric i.e., $(a, b) \in R \Rightarrow(b, a) \in R \forall a, b \in A$.
- Transitive i.e., $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R \forall a, b, c \in A$.

Based on the above information, answer the following questions:

1. If the relation $R=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}$ defined on the set $A=\{1,2$, $3\}$, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence
2. If the relation $R=\{(1,2),(2,1),(1,3),(3,1)\}$ defined on the set $A=\{1,2,3\}$, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence
3. If the relation R on the set N of all natural numbers defined as $R=\{(x, y): y=x+5$ and $(x<4)$, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence

CASE STUDY-2

A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67\%, the highest ever.

Let I be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation ' R ' is defined on I as follows:
$R=\{(V 1, V 2): V 1, V 2 \in l$ and both use their voting right in general election - 2019\}

1. Two neighbors X and $Y \in I . X$ exercised his voting right while Y did not cast her vote in general election - 2019. Which of the following is true?
a. $(X, Y) \in R$
b. $(Y, X) \in R$
c. $(X, X) \notin R$
d. $(X, Y) \notin R$
2. Mr.' X ' and his wife ' W 'both exercised their voting right in general election -2019, Which of the following is true?
a. both (X, W) and $(\mathrm{W}, \mathrm{X}) \in \mathrm{R}$
b. $(\mathrm{X}, \mathrm{W}) \in \mathrm{R}$ but $(\mathrm{W}, \mathrm{X}) \notin \mathrm{R}$
c. both (X, W) and $(W, X) \notin R$
d. $(W, X) \in R$ but $(X, W) \notin R$
3. Three friends F_{1}, F2 and F_{3} exercised their voting right in general election-2019, then which of the following is true?
a. $(F 1, F 2) \in R,(F 2, F 3) \in R$ and $(F 1, F 3) \in R$
b. $(F 1, F 2) \in R,(F 2, F 3) \in R$ and $(F 1, F 3) \notin R$
c. $(F 1, F 2) \in R,(F 2, F 2) \in R$ but $(F 3, F 3) \notin R$
d. $(F 1, F 2) \notin R,(F 2, F 3) \notin R$ and $(F 1, F 3) \notin R$
4. The above defined relation R is \qquad
a. Symmetric and transitive but not reflexive
b. Universal relation
c. Equivalence relation
d. Reflexive but not symmetric and transitive
5. Mr. Shyam exercised his voting right in General Election - 2019, then Mr. Shyam is related to which of the following?
a. All those eligible voters who cast their votes
b. Family members of Mr.Shyam
c. All citizens of India
d. Eligible voters of India

CASE STUDY- 3

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set $\{1,2,3,4,5,6\}$. Let A be the set of players while B be the set of all possible outcomes. $A=\{S, D\}, B=\{1,2,3,4,5,6\}$

1. Let $R: B \rightarrow B$ be defined by $R=\{\{x \mid y$ is divisble $b\}$ is
a. Reflexive and transitive but not symmetric
b. Reflexive and symmetric and not transitive
c. Not reflexive but symmetric and transitive
d. Equivalence
2. Raji wants to know the number of functions from A to B. How many number of functions arepossible?
a. 6^{2}
b. 2^{6}
c. 6 !
d. 2^{12}
3. Let R be a relation on B defined by $R=\{(1,2),(2,2),(1,3),(3,4),(3,1),(4,3),(5,5)\}$. Then R is
a. Symmetric
b. Reflexive
c. Transitive
d. None of these three
4. Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?
a. 6^{2}
b. 2^{6}
c. 6 !
d. 2^{12}
5. Let $R: B \rightarrow B$ be defined by $R=\{(1,1),(1,2),(2,2),(3,3),(4,4),(5,5),(6,6)\}$, then R is
a. Symmetric
b. Reflexive and Transitive
c. Transitive and symmetric
d. Equivalence

CASE STUDY 4

Consider the mapping $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is defined by $\mathrm{f}(\mathrm{x})=x-1 / x-2$ such that f is a bijection. Based on the above information, answer the following questions:

1. Domain off is
(a) $R-\{2\}$
(b) R
(c) $R-\{1,2\}$
(d) $R-\{0\}$
2. Range of f is
(a) R
(b) $R-\{1\}$
(c) $\mathrm{R}-\{0\}$
(d) $R-\{1,2\}$
3. If $\mathrm{g}: \mathrm{R}-\{2\} \rightarrow \mathrm{R}-\{1\}$ is defined by $\mathrm{g}(\mathrm{x})=2 \mathrm{f}(\mathrm{x})-1$, then $\mathrm{g}(\mathrm{x})$ in terms of x is
(a) $x+2 / x$
(b) $x+1 / x-2$
(c) $x-2 / x$
(d) $x / x-2$
4. The function g defined above, is
(a) One-one
(b) Many-one
(c) into
(d) None of these
5. A function $f(x)$ is said to be one-one if
(a) $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow-\mathrm{x}_{1}=\mathrm{x}_{2}$
(b) $f\left(-x_{1}\right)=f\left(-x_{2}\right) \Rightarrow-x_{1}=x_{2}$
(c) $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
(d) None of these

ASSERTION AND REASON

Read Assertion and reason carefully and write correct option for each question
(a) Both A and R are correct; R is the correct explanation of A.
(b) Both A and R are correct; R is not the correct explanation of A.
(c) A is correct; R is incorrect.
(d) R is correct; A is incorrect.

1 Assertion (A)Let Lbethe setofalllinesinaplaneand R betherelation inLdefinedas $\mathrm{R}=$ $\{(L 1, L 2)$: $L 1$ is perpendicular to $L 2\}$. R is not equivalence realtion.
Reason (R) R is symmetric but neither reflexive nor transitive
2 Assertion=\{(T1,T2):T1 is congruent to T2\}. Then R is an equivalence relation.
Reason(R)Any relation R is an equivalence relation, if it is reflexive, symmetric and transitive
3 Assertion (A)Therelation Rintheset $\{1,2,3\}$ givenby $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ isreflexivebut neither symmetric nortransitive.
Reason (R)Risnotsymmetric, as $(1,2) \in R$ but $(2,1) \notin R$. Similarly, Risnottransitive, as $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$.
4 Assertion (A) Show that the relation Rinthe set A ofallthe books in alibrary of a college, given by $R=\{(x, y): x$ and y have same number of pages $\}$ is not equivalence relation.
Reason (R) Since R is reflexive, symmetric and transitive.
5. Assertion (A) The relation R in R defined as $R=\{(a, b): a \leq b\}$ is not equivalence relation.

Reason (R) Since R is not reflexive but it is symmetric and transitive.
6. Assertion (A) The relation R in \mathbf{R} defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is not equivalence relation.

Reason (R) Since R is not reflexive but it is symmetric and transitive.
7 Assertion (A)The relation R inthe set Z of integersgiven by $R=\{(a, b): 2$ divides $a-b\}$ is reflexive and symmetric
Reason (R) R is reflexive, as 2 divides $(a-a)$ for all $a \in Z$.
8. Assertion (A) Let R be the relation defined inthe set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b)$: both a and b are either odd or even\}. R is an equivalence relation
Reason (R) Since R is reflexive, symmetric but R is not transitive.
9. Assertion (A) Let R betherelation in the set $\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3$,
$3),(3,2)\}$. R is not equivalence relation.
Reason (R) R is not Reflexive relation but it is symmetric and transitive
10. Assertion (A) if $n(A)=p$ and $n(B)=q$ The number of relation from set A to B is $p q$

Reason (\mathbf{R}) The number of subset of $A X B$ is $2^{p q}$
11. Assertion (A)A function $f: X \rightarrow Y$ is said to be one-one and onto (or bijective)

Reason (\mathbf{R}) if f is both one-one and onto.
12. Assertion (A) The function $f: \mathbf{N} \rightarrow \mathbf{N}$, given by $f(x)=2 x$, is one-one

Reason (R) The function f is one-one, for $f(x)=f(y) \Rightarrow 2 x=2 y \Rightarrow x=y .13$
Assertion (A) The function $f: \mathbf{N} \rightarrow \mathbf{N}$, given by $f(x)=2 x$, is not onto Reason
(\mathbf{R}) The function f is onto, for $f(x)=f(y) \Rightarrow 2 x=2 y \Rightarrow x=y$.
14 Assertion (A) the function $f: \mathbf{N} \rightarrow \mathbf{N}$, given by $f(1)=f(2)=1$ and $f(x)=x-1$, for every $x>2$, is onto but not oneone.
Reason (R) fis notone-one, $\operatorname{as} f(1)=f(2)=1$. But f is onto, asgiven any $y \in \mathbf{N}, y \neq 1$, we can choose x as $y+1$ such that $f(y$ $+1)=y+1-1=y$. Also for $1 \in N$, we have $f(1)=1$.
15 Assertion (A) A one-one function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ must be onto.
Reason (\mathbf{R}) Sincefis one-one, threeelements of $\{1,2,3\}$ mustbetakento3differentelements oftheco- domain $\{1,2$, 3 \} under f.
16Assertion (A) Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function From A to
B. Then f isone-one.

Reason (R) Since the function $f: \mathbf{N} \rightarrow \mathbf{N}$, given by $f(x)=2 x$, is not onto
17. Assertion (A) Let A and B besets. Show that $f: A \times B \rightarrow B \times A$ suchthat $f(a, b)=(b, a)$ is bijective function
Reason (R) f is said to equivalence relation if f is reflexive, symmetric and transitive
18. Assertion (A) The number of all one-one functions from set $A=\{1,2,3\}$ to itself is 6

Reason (R) if $n(A)=p$ and $n(B)=q$ The number of function from set A to B is $p q$
19 Assertion (A) The Modulus Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by $f(x)=|x|$ is not one one and onto function
Reason (\mathbf{R}) The Modulus Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by $f(x)=|x|$ is bijective function
20. Assertion (A) Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ bea function from A to
B. Then f is one-one.

Reason (R) f is bijective function

INVERSE TRIGONOMETRIC FUNCTION

MULTIPLE CHOICE QUESTIONS

Question 1. $\sin \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right)=$
(a) 1
(b) -1
(c) $\pi / 2$
(d) $\pi / 3$

Question 2. The principle value of $\sin ^{-1}(\sqrt{3} / 2)$ is
(a) $2 \pi / 3$
(b) $\pi / 6$
(c) $\pi / 4$
(d) $\pi / 3$

Question 3. Simplified form of $\cos ^{-1}\left(4 x^{3}-3 x\right)$
(a) $3 \sin ^{-1} x$
(b) $3 \cos ^{-1} x$
(c) $\pi-3 \sin ^{-1} x$
(d) None of these

Question 4. $\tan ^{-1} \sqrt{ } 3-\sec ^{-1}(-2)$ is equal to
(a) π
(b) $-\pi / 3$
(c) $\pi / 3$
(d) $2 \pi / 3$

Question 5. If $y=\sec ^{-1} x$ then
(a) $0 \leq y \leq \pi$
(b) $0 \leq y \leq \pi / 2$
(c) $-\pi / 2<y<\pi / 2$
(d) None of these

Question 6. If $\mathrm{x}+(1 / x)=2$ then the principal value of $\sin ^{-1} \mathrm{x}$ is
(a) $\pi / 4$
(b) $\pi / 2$
(c) π
(d) $3 \pi / 2$

Question 7. The principle value of $\sin ^{-1}(\sin 2 \pi / 3)$ is
(a) $2 \pi / 3$
(b) $\pi / 3$
(c) $-\pi / 6$
(d) $\pi / 6$

Question 8. The value of $\cos ^{-1}(1 / 2)+2 \sin ^{-1}(1 / 2)$ is equal to
(a) $\pi / 4$
(b) $\pi / 6$
(c) $2 \pi / 3$
(d) $5 \pi / 6$

Question 9. Principal value of $\tan ^{-1}(-1)$ is
(a) $\pi / 4$
(b) $-\pi / 2$
(c) $5 \pi / 4$
(d) $-\pi / 4$

Question 10. Principal value of $\sin ^{-1}(1 / \sqrt{2})$
(a) $\pi / 4$
(b) $3 \pi / 4$
(c) $5 \pi / 4$
(d) None of these

Question 11. $\sin ^{-1} \mathrm{x}=\mathrm{y}$ Then
(a) $0 \leq y \leq \pi$
(b) $-\pi / 2 \leq y \leq \pi / 2$
(c) $0<y<\pi$
(d) $-\pi / 2<y<-\pi / 2$

Question 12. $\cos ^{-1}(\cos 7 \pi / 6)$ is equal to
(a) $7 \pi / 6$
(b) $5 \pi / 6$
(c) $\pi / 3$
(d) $\pi / 6$

Question 13. $\sin \left[\pi / 3-\sin ^{-1}(-1 / 2)\right]$ is equal to
(a) $1 / / 2$
(b) $1 / 3$
(c) $1 / 4$
(d) 1

Question 14. The principal value of $\operatorname{cosec}^{-1}(-2)$ is
(a) $-2 \pi / 3$
(b) $\pi / 6$
(c) $2 \pi / 3$
(d) $-\pi / 6$

Question 15. The domain of the following $f(x)=\sqrt{ }\left(\sin ^{-1} x\right)$ is.
(a) $[0,1]$
(b) $[-1,1]$
(c) $[-2,0]$
(d) $[0,1]$

Question 16. Which of the following is the principal value branch of $\cos ^{-1} x$?
(a) $[-\pi / 2, \pi / 2]$
(b) $(0, \pi)$
(c) $[0, \pi]$
(d) $(0, \pi)-\{\pi / 2\}$

Question 17. Which of the following is the principal value branch of $\operatorname{cosec}^{-1} x$?
(a) $(-\pi / 2, \pi / 2)$
(b) $(0, \pi)-\{\pi / 2\}$
(c) $[-\pi / 2, \pi / 2]$
(d) $[-\pi / 2, \pi / 2]-[0]$

Question 18. If $3 \tan ^{-1} x+\cot ^{-1} x=\pi$, then x equals
(a) 0
(b) 1
(c) -1
(d) 12

Question 19. The value of $\cos ^{-1}[\cos (33 \pi / 5)]$ is
(a) $3 \pi / 5$
(b) $-3 \pi / 5$
(c) $\pi / 10$
(d) $-\pi / 10$

Question 20. The domain of the function $\cos ^{-1}(2 x-1)$ is
(a) $[0,1]$
(b) $[-1,1]$
(c) $[-1,-1]$
(d) $[0, \pi]$

Question 21. The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{ }(x-1)$ is
(a) $[1,2]$
(b) $[-1,1]$
(c) $[0,1]$
(d) None of these

Question 22. If $\cos \left(\sin ^{-1} 2 / 5+\cos ^{-1} x\right)=0$ then x is equal to
(a) $1 / 5$
(b) $2 / 5$
(c) 0
(d) 1

Question 23. The value of $\sin \left(2 \tan ^{-1}(0.75)\right)$ is equal to
(a) 0.75
(b) 1.5
(c) 0.96
(d) $\sin (1.5)$

Question 24. The value of $\cos ^{-1}(\cos 3 \pi / 2)$ is equal to
(a) $\pi / 2$
(b) $3 \pi / 2$
(c) $5 \pi / 2$
(d) $-7 \pi / 2$

Question 25. The value of expression $2 \sec ^{-1}(2)+\sin ^{-1}(1 / 2)$ is
(a) $\pi / 6$
(b) $5 \pi / 6$
(c) $7 \pi / 6$
(d) 1

Question 26. If $\sin ^{-1}\left(2 a / 1+a^{2}\right)+\cos ^{-1}\left(1-a^{2} / 1+a^{2}\right)=\tan ^{-1}\left(2 x / 1-x^{2}\right)$ where $a, x \in|0,1|$ then the value of x is
(a) 0
(b) a^{2}
(c) a
(d) $2 \mathrm{a} / 1-\mathrm{a}^{2}$

Question 27. The value of $\sin \left[\cos ^{-1}(7 / 25)\right]$ is
(a) $25 / 24$
(b) $25 / 7$
(c) $24 / 25$
(d) $7 / 24$

Question 28. $\sin ^{-1}(-1 / 2)$
(a) $\pi / 3$
(b) $-\pi / 3$
(c) $\pi / 6$
(d) $-\pi / 6$

Question 29. $\sec ^{-1}(-2 / \sqrt{3})$
(a) $\pi / 6$
(b) $\pi / 3$
(c) $5 \pi / 6$
(d) $-2 \pi / 3$

Question 30. $\cos ^{-1}(1 / 2)$
(a) $-\pi / 3$
(b) $\pi / 3$
(c) $\pi / 2$
(d) $2 \pi / 3$

Question 31. $\operatorname{cosec}^{-1}(-2 / \sqrt{3})$
(a) $-\pi / 3$
(b) $\pi / 3$
(c) $\pi / 2$
(d) $-\pi / 2$

Question 32. $\cot ^{-1}(1)$
(a) $\pi / 3$
(b) $\pi / 4$
(c) $\pi / 2$
(d) 0

Question 33. $\cos ^{-1}(\sqrt{3} / 2)$
(a) $5 \pi / 6$
(b) $\pi / 6$
(C) $4 \pi / 9$
(d) $2 \pi / 3$

Question 34. $\operatorname{cosec}^{-1}(2)$
(a) $\pi / 6$
(b) $2 \pi / 3$
(c) $5 \pi / 6$
(d) 0

Question 35. $\sec ^{-1}(2)$
(a) $\pi / 6$
(b) $\pi / 3$
(c) $2 \pi / 3$
(d) $5 \pi / 6$

Question 36. $\tan ^{-1}(\sqrt{ } 3)$
(a) $\pi / 6$
(b) $\pi / 3$
(c) $2 \pi / 3$
(d) $5 \pi / 6$

Question 37. $\cot ^{-1}(-\sqrt{ } 3)$
(a) $5 \pi / 6$
(b) $\pi / 3$
(c) $\pi / 2$
(d) $\pi / 4$

Question 38. $\tan ^{-1}(\sqrt{3})+\sec ^{-1}(-2)-\operatorname{cosec}^{-1}(2 / \sqrt{3})$
(a) $5 \pi / 6$
(b) $2 \pi / 3$
(c) $\pi / 3$
(d) 0

Question 39. $\cos ^{-1}(-1 / 2)+2 \sin ^{-1}(-1 / 2)$
(a) $\pi / 3$
(b) $2 \pi / 3$
(c) $3 \pi / 4$
(d) $5 \pi / 8$

CASE STUDY QUESTIONS

Case Study 1

AgroupofstudentsofclassXIIvisitedIndiaGateonaneducationtrip. Theteacherandstudentshadinterest in history as well. The teacher narrated that India Gate, official name Delhi Memorial, originally called All-India WarMemorial, monumentalsandstonearchinNew Delhi, dedicatedtothetroopsofBritishIndia whodiedin wars fought between 1914 and 1919. The teacher also said that India Gate, which is located at the eastern end of the Raj path (formerly called the Kingsway), is about 138 feet (42 metrs) in height.

1. What is the angle of elevation if they are standing at a distance of 42 m away from the monument?
a) $\tan ^{-1} 1$
b) $\sin ^{-1} 1$
c) $\cos ^{-1} 1$
d) $\sec ^{-1} 1$
2. They want to see the tower at an angle of $\sec ^{-1} 2$. So, they want to know the distance where they should stand and hence find the distance.
a) 42 m b) $20.12 \mathrm{~m} \mathrm{c)} 25.24 \mathrm{~m}$
d) 24.64 m
3. If the altitude of the Sun is at $\cos ^{-1}{ }^{1},{ }_{2}$ then the height of the vertical tower that will cast a shadow of length $\mathbf{2 0} \mathbf{~ m}$ is
a) 20 V 3 m
b) $20 / \sqrt{ } 3 \mathrm{~m}$
c) $15 / \mathrm{V} 3 \mathrm{~m}$
d) 15 V 3 m
4. The ratio of the length of a rod and its shadow is $1: 2$. The angle of elevation of the Sun is
a) $\sin ^{-1}{ }^{1}$
b) $\cos ^{-1}$
c) $\tan ^{-1}{ }^{1}$
d) $\cot ^{-1}{ }^{1}$
5. Domain of $\sin ^{-1} x$ is. \qquad
a) $(-1,1)$ b) $\{-1,1\}$ c) $[-1,1]$ d) none of these

Case Study 2

ASatellite flying atheighth is watching the top of the two tallest mountainsin Uttarakhandand Karnataka, them being Nanda Devi (height 7,816m) and Mullayanagiri (height $1,930 \mathrm{~m}$). The angles of depression from the satellite, to the top of Nanda Devi and Mullayanagiri are $\cot ^{-1} \sqrt{3}$ andtan ${ }^{-1} \sqrt{3}$ respectively. If the distance between the peaks of the two mountainsis 1937 km , andthe satellite isverticallyabovethemidpointofthedistancebetweenthetwomountains.

1. The distance of the satellite from the top of Nanda Devi is
a) 1139.4 kmb$) 577.52 \mathrm{kmc}) 1937 \mathrm{kmd}) 1025.36 \mathrm{~km}$
2. The distance of the satellite from the top of Mullayanagiri is
a) 1139.4 kmb$) 577.52 \mathrm{kmc}) 1937 \mathrm{kmd}) 1025.36 \mathrm{~km}$
3. The distance of the satellite from the ground is
a) 1139.4 kmb$) 577.52 \mathrm{kmc}) 1937 \mathrm{kmd}) 1025.36 \mathrm{~km}$
4. What is the angle of elevation if a man is standing at a distance of 7816m from Nanda Devi?
a) $\left.\left.\left.\sec ^{-1} 2 \mathrm{~b}\right) \cot ^{-1} 1 \mathrm{c}\right) \sin ^{-1} \stackrel{\mathrm{v}}{ }^{3} \mathrm{~d}\right)$
$\cos ^{-1} 1$
2
5.If a mile stone very far away from, makes $\cos ^{-1}{ }^{1}$ tothe top of Mullanyangiri mountain. So, find the distance of this mile stone from the mountain.
a) 1118.327 kmb$) 566.976 \mathrm{kmc}) 1937 \mathrm{kmd}) 1025.36 \mathrm{~km}$

Case Study 3

The angles of depression of the top and the bottom of an 8 m tall building from the top of a multi-storeyed building are $\tan ^{-1} \frac{1}{\sqrt{3}}$ and $\sec ^{-1} \sqrt{2}$, respectively.

1 The height of the multi-storeyed building is
a) $4(3+\sqrt{3}) \mathrm{m}$
b) $3(3+\sqrt{3}) \mathrm{m}$
c) $4(4+\sqrt{3}) \mathrm{m}$
d) $4(3+3 \sqrt{3}) \overline{\mathrm{m}}$

2 The distance between the two buildings.
a) $4(13+\sqrt{3}) \mathrm{m}$
b) $4(31+\sqrt{3}) \mathrm{m}-$
c) $2(3+\sqrt{3}) \mathrm{m}_{-}^{-}$
d) $4(3+\sqrt{3}) \mathrm{m}$

3 The value of $\tan ^{-1} \frac{1}{\sqrt{3}}$ is
a) $\sin ^{-1} \quad-$
b) $\cos ^{-1} \quad \overline{2}$
c) $\sec ^{-1} \frac{}{\sqrt{2}}$
d) $\csc ^{-1} \sqrt{2}$
4. The value of $\sec ^{-1} \sqrt{2}$ is
a) $\sin ^{-1} \quad \overline{2}$
b) $\cos ^{-1}-$
c) $\cos ^{-1} \frac{}{\sqrt{2}}$
d) $\sin ^{-1} \frac{\sqrt{3}-}{2}$
5. The range of $\cos ^{-1} \boldsymbol{x}$
a) $(0, \pi)$
b) $[0, \pi]$
c) $\{0, \pi\}$
d) $(0, \pi]$

ASSERTION AND REASON

Read Assertion and reason carefully and write correct option for each question
(a) Both A and R are correct; R is the correct explanation of A.
(b) Both A and R are correct; R is not the correct explanation of A.
(c) A is correct; R is incorrect.
(d) R is correct; A is incorrect.

1. Assertion (A)Domain of $\sin ^{-1} x$ is $(-1,1)$

Reason (R) The value of $\sin ^{-1}{ }^{1}=\frac{\pi}{2}$ is $\frac{1}{6}$
2. Assertion (A)Range of $\sin ^{-1} x$ is $\left[\begin{array}{l}-\pi \\ \\ ,\end{array}\right]$

Reason(R)The principalvalue of $\sin ^{-1}{ }^{1}={ }^{\pi} \quad \overline{2} \quad \overline{6}$
3. Assertion (A)The principal value of $\cot ^{-1} \quad \frac{1}{\sqrt{3}}=\frac{\pi}{6}$

Reason(\mathbf{R})Range of principal value branch of $\cot ^{-1} x$ is $(0, \pi)$
4. Assertion (A)The principal value of $\tan ^{-1} \quad \frac{1}{\sqrt{3}}=\frac{\pi}{6}$

Reason (\mathbf{R}) Range of principal value branch of $\tan ^{-1} x$ is $(0, \pi)$
5. Assertion (A)The principal value of $\cos ^{-1} \overline{\bar{I}}^{\pi}$

Reason (R) Range of principal value branch of $\cos ^{-1} x$ is $[0, \pi]$
6. Assertion(A)Theprincipalvalue of $\cos ^{-1} \quad \frac{1}{\sqrt{2}}=\frac{\pi}{4}$

Reason(\mathbf{R})Range of principal value branch of $\cot ^{-1} x$ is $[0, \pi]$
7. Assertion (A)The principalvalue of $\cos ^{-1}-1 \quad \overline{\sqrt{2}}=\frac{3 \pi}{4}$

Reason (R) Range of principal value branch of $\cos ^{-1} x$ is $[0, \pi]$
8. Assertion (A)Range of principal value branch of $\cot ^{-1} x$ is $(0, \pi)$

Reason(R)Domain of $\sin ^{-1} x$ is $(-1,1)$
9. Assertion (A) $\frac{1}{\sin x} \neq \sin ^{-1} x$

Reason (R) $\frac{1}{\sin x}=(\sin x)^{-1}$
10. Assertion (A) The principal value of $\cos ^{-1}-\underline{\nu^{3}}={ }_{2}^{-5 \pi} \frac{-}{6}$

Reason (\mathbf{R}) Range of principal value branch of $\cos ^{-1} x$ is $[-\pi, \pi]$

MATRICES

MULTIPLE CHOICE QUESTIONS

1.If $\left[\begin{array}{lll}x & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -2 & 0\end{array}\right]=0$, then xequals
(a) 0
(b) -2
(c) -1
(d) 2

3
2
2.If $A=\left[\begin{array}{lll}2 & -3 & 4\end{array}\right], B=[2], \mathrm{X}=[1$

2
2 3]and $Y=[3]$, then $A B+X Y$ equals
4
(a) [28]
(b) [24]
(c) 28
(d) 24
3. Which of the given value of x and y make the following matrices equal $\left.\begin{array}{ccc}3 x+7 \\ y+1 & 5\end{array}\right]\left[\begin{array}{ll}0 & y-2\end{array}\right]$

$$
2-3 x \quad 8 \quad 4
$$

(a) $x=\frac{-1}{2}, y=7$
(b) Not possible tofind
(c) $x=\frac{-2}{3}, y=7$
(d) $x=\frac{-1}{3}, y=\frac{-2}{3}$
4. The number of all possible matrices of order 3×3 with each entry 0 or 1 is:
(a) 27
(b) 18
(c) 81
(d) 512
5. If $A=\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha^{\prime}\end{array}$, and $A+A^{\prime}=1$, then the value of α is
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{3}$
(c) π
(d) $\frac{3 \pi}{2}$
6. Matrix A and B will be inverse of each other only if
(a) $A B=B A$
(b) $A B=B A=0$
(c) $A B=0, B A=1$
(d) $A B=B A=1$

$$
\begin{array}{lll}
0 & 0 & 4
\end{array}
$$

7. The matrix $\mathrm{P}=\left[\begin{array}{lll}0 & 4 & 0\end{array}\right]$ is a

400
(a) square matrix
(b) diagonal matrix
(c) unit matrix
(d) None of these
8. If A and B are symmetric matrices of same order, then $A B-B A$ is a
(a) Skew-symmetric matrix
(b) Symmetric matrix
(c) Zero matrix
(d) Identity

9. The matrix[| 0 | -5 | 8 |
| :---: | :---: | :---: |
| 5 | 0 | $17]$ is a |
| -8 | -17 | 0 |

(a) Diagonal matrix
(b) Skew-symmetric matrix
(c) Symmetric matrix
(d) Scalar matrix
10. If a matrix has 6 elements, then number of possible orders of the matrix can be
(a) 2
(b) 4
(c) 3
(d) 6
11.If $A=\left[a_{i j}\right]$ is a 2×3 matrix, such that $a_{i j}=\quad \underline{(-i+2)^{2} 5}$ then a_{23} is
(a) $\frac{5}{5}$
(b) ${ }_{5}$
(c) $\frac{9}{5}$
(d) $\frac{16}{5}$
12. Total number of possible matrices of order 2×3 with each entry 1 or 0 is
(a) 6
(b) 36
(c) 32
(d) 64
13. If A is a square matrix such that $A^{2}=A$, then $(1+A)^{2}-3 A$ is
(a) 1
(b) 2 A
(c) 31
(d) A
14. If $A=\left[\begin{array}{ll}0 & 2 \\ 0 & 4^{2}\end{array}\right]$, then A^{2} is
(a)
(b) $\left[\begin{array}{ll}4 & 0 \\ 4 & 0 \\ 4 & 8\end{array}\right]$
(c)
(d) $\left[\begin{array}{ll}4 & 4 \\ 0 & 4\end{array}\right]$
15. The diagonal elements of a skew symmetric matrix are
(a) all zeroes
(b) are all equal to some scalar $\mathrm{k}(\neq 0)$
(c) can be anynumber
(d) none of these
16. If $A=\left[\begin{array}{ll}5 & x \\ y & 0\end{array}\right]$ and $A=A^{\prime}$ then
(a) $x=0, y=5$
(b) $x=y$
(c) $x+y=5$
(d) $x-y=5$
17. If a matrix A is both symmetric and skew symmetric then matrix A is
(a) a scalar matrix
(b) a diagonal matrix
(c) a zero matrix of order $\mathrm{n} \times \mathrm{n}$
(d) a rectangular matrix.
18. If $F(x)=\left[\begin{array}{cc}\cos X & \sin X\end{array}\right]$, then $F(x) F(y)$ is equal to
(a) $F(x)$
(b) $F(x y)$
(c) $F(x+y)$
(d) $F(x-y)$
19. The matrix A satisfies the equation $\left[\begin{array}{lll}0 & & 2\end{array}\right] \mathrm{A}=\left[\begin{array}{lll}1 & & 0 \\ & -1 & 1\end{array} \begin{array}{ll} & 0\end{array}\right]$ then

$1 \begin{array}{ll}1 & -1\end{array}$
(c) $\left[\begin{array}{ll}{ }^{2} & \\ \frac{1}{2} & 0\end{array}\right.$
(d) $\left[\begin{array}{ll}3 & 2 \\ -1 & 4\end{array}\right]$
20. Thematrix $A=\left[\begin{array}{llll}0 & & 1 & 0\end{array}\right]$, then A^{6} is equal to
(a) zero matrix
(b) A
(c) I
(d) none of these
21. If $A=\left[\begin{array}{ll}3 & 1 \\ -1 & 2\end{array}\right]$, then $A^{2}-5 A-71$ is
(a) a zero matrix
(b) an identity matrix
(c) diagonal matrix
(d) none ofthese
22. Amatrixhas18elements, thenpossiblenumberofordersofamatrixare (a)3
(b) 4
(c) 6
(d) 5
23. If matrix A is of order $m \times n$, and for matrix $B, A B$ and $B A$ both are defined, then order of matrix B is
(a) $m \times n$
(b) $n \times n$
(c) $m \times m$
(d) $n \times m$
24. The matrix [$\begin{array}{ccc}2 & -1 & 4 \\ & 0 & -5] \text { is } \\ -4 & 5 & 7\end{array}$
(a) a symmetric matrix
(b) a skew-symmetric matrix
(c) a diagonal matrix
(d) none of these
25. If $A=\left[\begin{array}{rr}3 & -2 \\ 4 & -2\end{array}\right]$,thenthevalueofkif, $A \quad{ }^{2}=k A-2 I$ is
(a) 0
(b) 8
(c) -7
(d) 1

CASE STUDY QUESTIONS

1.A manufacture produces three stationery products Pencil, Eraser and Sharpenerwhich he sells intwo markets.

Annual sales are indicated below

Market	Products (in numbers)		
	Pencil	Eraser	Sharpener
A	10,000	2000	18,000
B	6000	20,000	8,000

If the unit Sale price of Pencil, Eraser and Sharpener are ₹ 2.50 , ₹ 1.50 and ₹ 1.00 respectively, and unit cost of the above three commodities are ₹ 2.00 , ₹ 1.00 and ₹ 0.50 respectively, then, based on the above information answer the following:
(a) Total revenue of market A
(i) ₹ 64,000
(ii) ₹ 60,400
(iii) ₹ 46,000
(iv) ₹ 40,600
(b) Total revenue of market B
(i) $₹ 35,000$
(ii) ₹ 53,000
(iii) $₹ 50,300$
(iv) ₹ 30,500
(c) Cost incurred in market A
(i) ₹ 13,000
(ii) ₹ 30,100
(iii) ₹ 10,300
(iv) ₹ 31,000
(d) Profit in market A and B respectively are (i)
(₹ 15,000 , ₹ 17,000)
(ii) (₹ 17,000 , ₹ 15,000)
(iii) ($₹ 51,000, ₹ 71,000)$
(iv) (₹10,000, ₹20,000)
(e) Grossprofitinbothmarket
(i) ₹ 23,000
(ii) ₹ 20,300
(iii) ₹ 32,000
(iv) ₹ 30,200
2. Amit,BirajandChiragweregiventhetaskofcreatingasquarematrixoforder2.Belowarethematrices created by them. A, B, C are the matrices created by Amit, Biraj and Chirag respectively.

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right] B=\left[\begin{array}{lll}
4 & 0
\end{array}\right] C=\left[\begin{array}{lll}
2 & & 0
\end{array}\right]
$$

If $a=4$ and $b=-2$, based on the above information answer the following:
(a) Sum of the matrices A, B and $C, A+(B+C)$ is

(b) $\left(\mathrm{A}^{\top}\right)^{\top}$ is equal to

(c) $\left(\mathrm{bAA}^{\mathrm{T}}{ }_{-4}^{\mathrm{T}}\right.$ is equalto
(i) $\left[\begin{array}{ll}2 & -6\end{array}\right]$

(d) $\mathrm{AC}-\mathrm{BC}$ is equal to
(i)[
(ii) $\left[\begin{array}{cc}-4 & -4 \\ 4 & -4 \\ & 4 \\ \text { (iii) } & -6 \\ -6 & -4\end{array}\right]$
(iii)
(iv) $\left[\begin{array}{cc}-6 & 4 \\ -6 & -4\end{array}\right]$
(e) $(a+b) B$ is equal to
(i) $\left[\begin{array}{ll}0 & 8 \\ 10 & 2 \\ 2 & 10\end{array}\right]$
(ii)
(iii) $\left[\begin{array}{ll}8 & 0 \\ 2 & 10\end{array}\right]$
(iv) $\left[\begin{array}{cc}2 & 10 \\ 8 & 10\end{array}\right]$
3. Twofarmers Ramakishanand GurucharanSinghcultivateonlythreevarieties ofricenamely Basmati, PermalandNaura.Thesale(inrupees) ofthesevarietiesofricebyboththefarmersinthemonth of September and October are given by the following matrices A and B .

	10,000	20,000	30,000 Ramakishan
	5000000	1000800	6080000 Ramurcharan
October sales (in Rupees)	$B=$,

(a) Thetotalsales inSeptember and Octoberforeach farmer ineach variety can be represented as
(i) $\mathrm{A}+\mathrm{B}$
(ii) $\quad A-B$
(iii) $A>B$
(iv) $\quad A<B$
(b) Whatisthevalueof A_{23} ?
(i) 10000
(ii) 20000
(iii) 30000
(iv) 40000
(c) The decrease in sales from September to October is given by \qquad .
(i) $\mathrm{A}+\mathrm{B}$
(ii) $\mathrm{A}-\mathrm{B}$
(iii) $A>B$
(iv) $A<B$
(d) If Ramkishan receives 2% profit on gross sales, compute his profit for each variety sold in October. (i)₹ 100, ₹ 200 and ₹ 120
(ii) ₹100,₹200and₹130
(iii) ₹100,₹220and₹120
(iv) ₹110,₹200and₹120
(e) If Gurucharan receives 2% profit ongross sales, compute his profit for each variety sold in September. (i) ₹ 100, ₹ 200, ₹ 120
(ii) ₹ 1000 , ₹ 600, ₹ 200
(iii) ₹ 400, ₹ 200 , ₹ 120
(iv) ₹ 1200 , ₹ 200 , ₹ 120
4. Assume the following data regarding the number of USB cables and their types manufactured in the company I, II and III per day.

Type A Type B Type C
I 403050
II $20 \quad 80 \quad 10$
III 40605

(a) How the above information can be represented in a square matrix of 3×3 ?
$\begin{array}{lll}40 & 30 & 50\end{array}$
(i) $\left[\begin{array}{lll}40 & 60 & 5\end{array}\right]$
$20 \quad 80 \quad 10$
$\begin{array}{lll}40 & 30 & 50\end{array}$
(ii) $\left[\begin{array}{lll}20 & 80 & 10\end{array}\right]$
$\begin{array}{ccc}40 & 60 & 5 \\ 40 & 20 & 40\end{array}$
(iii) $\left[\begin{array}{lll}30 & 80 & 60\end{array}\right]$
$\begin{array}{lll}50 & 10 & 5\end{array}$
$40 \quad 50$
(iv) $\left[\begin{array}{lll}80 & 20 & 10\end{array}\right]$
$60 \quad 40 \quad 5$
(b) What does the element of 3rd row and 3rd column represents?
(i) NumberofUSBtype ${ }^{\prime} C^{\prime}=5 \quad$ Produced by company = III
(ii) NumberofUSBtype ${ }^{\prime} C^{\prime}=50 \quad$ Produced bycompany=III
(iii) NumberofUSBtype ' $C^{\prime}=40 \quad$ Produced bycompany=III
(iv) NumberofUSBtype ${ }^{\prime}$ ' $=5 \quad$ Produced by company = 1
(c) How many USB cables are produced by company I in 3 days?
(i) 120
(ii) 360
(iii) 90
(iv) 150
(d) How many USBcables are produced byall the companies in 2 days?
(i) 670
(ii) 560
(iii) 870
(iv) 1050
(e) How manyUSBcables ofC-typeareproduced by companyII?
(i) 10
(ii) 5
(iii) 50
(iv) 60

ASSERTION AND REASON

1.In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true but R is not the correct explanation of A
(C) A is true but R is false
(D) A is False and R is True.
i)Assertion (A) : If A is a square matrix such that $A^{2}=A$, then $(1+A)^{2}-3 A=1$

Reason (R): AI = $A A=A$
$7 \quad 0$
li)Assertion (A): :[0cc| $\left.\begin{array}{lll}0 & 7 & 0\end{array}\right]$ is a scalar matrix. $\begin{array}{lll}0 & 0\end{array}$
Reason (R) : If all the elements of the principal diagonal are equal, it is called a scalar matrix.
iii) Assertion (A) : $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$

Reason (R) : Generally $A B \neq B A$
iv) A and B are two matrices such that $A B$ and $B A$ are defined

Assertion (A) : $(A+B)(A-B)=A^{2}-B^{2}$
Reason (R): $(A+B)(A-B)=A^{2}-A B+B A-B^{2}$
v) Let A and B be the two symmetric matrices of order 3

Assertion (A) : $A(B A)$ and ($A B) A$ are symmetric matrices
Reason (R) : AB is symmetric matrix if matrix multiplication of A with B is commutative .

$$
\begin{array}{lll}
0 & 2 b & -2
\end{array}
$$

vi) Assertion (A) : If the matrix $\mathrm{P}=\left[\begin{array}{llll}3 & & 1 & 3\end{array}\right]$ is a symmetric matrix, then $a=\frac{-2}{3} \quad \begin{gathered}3 a \\ \text { and } b=\frac{3}{2} \\ \frac{3}{2}\end{gathered}$
Reason (R): If P is a symmetric matrix, Then $P^{\prime}=-P$
vii) Assertion (A) : If A is a symmetric matrix, then $B^{\prime} A B$ is also symmetric Reason (R) : ($A B C)^{\prime}=C^{\prime} B^{\prime} A^{\prime}$
viii) Assertion (A) : If A and B are symmetric matrices, then $A B-B A$ is a skew-symmetric matrix.

Reason (R) : $(A B)^{\prime}=B^{\prime} A^{\prime}$

DETERMINANTS

MULTIPLE CHOICE QUESTIONS

1. If A is a square matrix of order 3 , such that $A(a d i A)=10 I$, then $|a d j A|$ is equal to
(a) 1
(b) 10
(c) 100 (d)

1000

A^{2}	x^{3}	1	Ax
By	Cz		

(a) $\Delta+\Delta_{1}=0$
(b) $\Delta \neq \Delta_{1}$
(c) $\Delta=x \Delta_{1}$
(d) $\Delta-\Delta_{1}=0$
3. Let A be a square matrix oforder 2×2, then $|K A|$ is equal to (a)
K|A|
(b) $\mathrm{K}^{2}|\mathrm{~A}|$
(c) $K^{3}|A|$
(d) $2 \mathrm{~K}|\mathrm{~A}|$
4. If $\Delta=\left|\begin{array}{lll}a_{21} & a_{22} & a_{23}\end{array}\right|$ and $A_{i j}$ is cofactor of $a_{i j}$, then the value of Δ is given by $(a) a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}$ $\begin{array}{lll}a_{31} & a_{32} & a_{33}\end{array}$
(b) $a_{11} A_{11}+a_{12} A_{21}+a_{13} A_{31}$ (c)
$\mathrm{a}_{21} \mathrm{~A}_{11}+\mathrm{a}_{22} \mathrm{~A}_{12}+\mathrm{a}_{23} \mathrm{~A}_{13}$
(d) $a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31}$
5. If A and B are invertible matrices then which of the following is not correct
(a) $\operatorname{Adj} A=|A| \cdot A^{-1}$
(b) $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}$
(c) $(A B)^{-1}=B^{-1} A^{-1}$
(d) $(A+B)^{-1}=A^{-1}+B^{-1}$
6. Let A be a non-angular square matrix of order 3×3, then $|A \cdot \operatorname{adj} A|$ is equal to
(a) $|A|^{3}$
(b) $|A|^{2}$
(c) $|\mathrm{A}|$
(d) $3|\mathrm{~A}|$
7. Let A be a square matrix of order 3×3 and k a scalar, then $|k A|$ is equal to
(a) $k|A|$
(b) $|k||A|$
(c) $k^{3}|A|$
(d) none ofthese
8. If a, b, c are all distinct, and $\left|b \quad b^{2} \quad 1+b^{3}\right|=0=0$, then the value of $a b c$ is
c $\quad c^{2} \quad 1+c^{3}$
(a) 0
(b) -1
(c) 3
(d) -3

$$
x+1 \quad x+2 \quad x+a
$$

9. If a, b, c are in $A P$, then the value of $|x+2 \quad x+3 \quad x+b|$ is
(a) 4
(b) -3
(c) 0
(d) abc
10. If A is a skew-symmetric matrix of order 3 , then the value of $|A|$ is
(a) 3
(b) 0
(c) 9
(d) 27
$2 \quad 3 \quad 2$
11. If $|x \quad x \quad x|+3=0$, then the value of x is $4 \quad 9 \quad 1$
(a) 3
(b) 0
(c) -1
(d) 1

(a) 460
(b) 200
(c) 3000
(d) -7000
12. If $A=\left[\begin{array}{lll}\text { a } & 0 & 0 \\ 0 & \text { a } & 0\end{array}\right]$, then def(adi $\left.A\right)$ equals
(a) a^{27}
(b) a^{9}
(c) a^{6}
(d) a^{2}
13. If A is any square matrix of order 3×3 such that $|A|=3$, then the value of $|\mathrm{Adj} A|$ is (a) 3
(b) ${ }_{-}^{1}$
(c) 9
(d) 27
14. If $\left.\right|^{2 x} \quad \begin{array}{lll}5 \\ 8 & x^{2} & =\left.\right|^{6} \\ 7 & 3\end{array} \quad \begin{aligned} & -2\end{aligned}$, then the value of x is
(a) 3
(b) ± 3
(c) ± 6
(d) 6
15. The area of a triangle with vertices $(-3,0),(3,0)$ and $(0, k)$ is 9 sq. units. Then, the value of k will be
(a) 9
(b) 3
(c) -9
(d) 6
16. If A and B are invertible matrices, then which of the following is not correct?
(a) adj $A=|A| \cdot A^{-1}$
(b) $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$
(c) $(A B)^{-1}=B^{-1} A^{-1}$
(d) $(\mathrm{A}+\mathrm{B})^{-1}=\mathrm{B}_{1}^{-1}+\mathrm{A}_{2}^{-1}$
17. Adjoint of matrix $\left[\begin{array}{ll} & \\ 3 & 4\end{array}\right]$ is
(a) $\left[\begin{array}{ll}4 & 2 \\ 3 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & -2 \\ -3 & 4\end{array}\right]$
$\left.\begin{array}{l}\text { 19. If } \mathrm{A}=\left[\begin{array}{cc}2 & -3 \\ \text { (a) }{ }^{1} \mathrm{~L}^{2} & 3_{3}\end{array}\right]\end{array}\right]$, then $\mathrm{A}^{-1} \quad$ will be
(b) $\frac{{ }^{17}\left[\overline{4}^{3}\right.}{17}-3$
(c) $\left.{ }^{-1} \frac{1}{{ }^{17}} \overline{4}^{-3} \quad 3 \quad{ }^{3}\right]$
(d) $\left.\frac{1}{17}-3 \quad \begin{array}{ll}4 & 3\end{array}\right]$
20.For any square matrix $A, A A^{T}$ is a
(a) Unit matrix
(b) Symmetric matrix
(c) Skew symmetricmatrix
(d) Diagonal matrix
18. Which of the following is not true?
(a) Every skew-symmetric matrix of odd order is non-singular
(b) If determinant of a square matrix is non-zero, then it is non singular
(c) Adjoint of symmetric matrix is symmetric
(d) Adjoint of a diagonal matrix is diagonal
19. Ifa matrix A is suchthat $3 \mathrm{~A}^{3}+2 \mathrm{~A}^{2}+5 \mathrm{~A}+\mathrm{I}=0$ then its inverse is (a) $-\left(3 \mathrm{~A}^{2}+2 \mathrm{~A}\right.$
$+5 I)$
(b) $\left(3 A^{2}+2 A+5 I\right)$
(c) $\left(3 \mathrm{~A}^{2}-2 \mathrm{~A}+5 \mathrm{I}\right)$
(d) None of these
23.If the order of matrix A is $m \times p$ and the order of B is $p x n$. Then the order of matrix $A B$ is?
(a) $m \times n$
(b) $n \times m$
(c) $n \times p$
(d) $m \times p$
20. Whatis xif $\left[\begin{array}{cc}1 & 4 \\ 2 & x\end{array}\right]$ is a singularmatrix?
(a) 5
(b) 6
(c) 7
(d) 8

$$
a \quad b \quad g \quad h \quad i
$$

25. If $\left[\mathrm{c} \xlongequal[\mathrm{e}]{\mathrm{d}} \stackrel{\mathrm{f}}{\mathrm{f}} \mathrm{A}=\left[\begin{array}{llll}\mathrm{j} & \mathrm{k} & \mathrm{l} \\ \mathrm{m} & \mathrm{l} \\ \mathrm{n} & 0\end{array}\right]\right.$ then order of matrix Ais
(a) 2×2
(b) 2×3
(c) 3×2
(d) 3×3

CASE STUDY QUESTIONS

1. Manjitwantstodonatearectangularplotoflandforaschoolinhisvillage. Whenhewasaskedtogive dimensionsoftheplot, hetoldthatifitslengthisdecreasedby50mandbreadthisincreasedby 50 m , thenits area willremainsame,butiflengthisdecreasedby 10 mand breadthisdecreased by 20 m , then its area will
decrease by $5300 \mathrm{~m}^{2}$.

information given above, answer the following questions:
(a) The equations in terms of X and Y are (i)

$$
x-y=50,2 x-y=550
$$

(ii) $x-y=50,2 x+y=550$
(iii) $x+y=50,2 x+y=550$
(iv) $x+y=50,2 x+y=550$
(b) Which of the following matrix equation is represented by the given information:

(c) The value of x (length of rectangular field) is
(i) 150 m
(ii) 400 m
(iii) 200 m
(iv) 320 m
(d) The value of y (breadth of rectangular field) is
(i) 150 m
(ii) 200 m
(iii) 430 m
(iv) 350 m
(e) How much is the area of rectangular field?
(i) 60000 sqm .
(ii) 30000 sqm .
(iii) 30000 m
(iv) 3000 m
2. Raja purchases 3 pens, 2 pencils and 1 mathematics instrument boxand pays $₹ 41$ to the shopkeeper. His friends, Daya and Anil purchases 2 pens, 1 pencil, 2 instrument boxes and 2 pens, 2 pencils and 2 mathematical instrument boxes respectively. Daya and Anil pays $₹ 29$ and $₹ 44$ respectively. Based on the above information answer the following:
(a) The cost of one pen is
(i) ₹2
(ii) ₹5
(iii) ₹ 10
(iv) ₹15
(b) The cost of one pen and one pencil is
(i) ₹ 5
(ii) ₹10
(iii) ₹15
(iv) ₹17
(c) The cost of one pen and one mathematical instrument box is
(i) ₹ 7
(ii) ₹ 10
(iii) ₹ 15
(iv) ₹18
(d) The cost of one pencil and one mathematical instrumental box is
(i) ₹ 5
(ii) ₹10
(iii) ₹ 15
(iv) ₹20
(e) The cost of one pen, one pencil and one mathematical instrumental box is
(i) ₹ 10
(ii) ₹15
(iii) ₹22
(iv) ₹25
3. The management committee of a residential colony decided to award some of its members (say x) for honesty, some(sayy)forhelpingothersandsomeothers(sayz)forsupervisingtheworkerstokept thecolonyneatand clean. The sum of alltheawardees is 12 . Threetimesthesum ofawardeesfor cooperation and supervision added to two times the number of awardees for honesty is 33 . The sum of the number of awardees forhonesty andsupervision istwice the number of awardeesforhelping.

1 Value of $\mathrm{x}+\mathrm{y}+\mathrm{z}$ is
(a) 3
(b) 5
(c) 7
(d) 12
(Value of $x-2 y$ is
(a) z
(b) $-z$
(c) $2 z$
(d) $-2 z$
(The value of z is
(a) 3
(b) 4
(c) 5
(d) 6
(v) The value of $x+2$ yis
(a) 9
(b) 10
(c) 11
(d) 12
(M) The value of $2 x+3 y+5 z$ is
(a) 40
(b) 43
(c) 50
(d) 53
4. Read the following text and answer the following questions on the basis of the same:

Two schools Oxford and Navdeep want to award their selected students on the values of sincerity, truthfulness and helpfulness. Oxford wants to award Exeach, y each and z each for the three respective values to 3,2 and 1 students respectivelywithatotalawardmoney of1600.Navdeepwantstospend2300toaward its4,1and3studentsonthe respectivevalues(bygivingthesameamounttothethreevaluesasbefore). The total amount of the award for one prize on each is $₹ 900$.

(i) Value of $\mathrm{x}+\mathrm{y}+\mathrm{z}$ is
(a) 800
(b) 900 (c)

1000 (d)
1200
(ii) Value of $4 \mathrm{x}+\mathrm{y}+3 \mathrm{z}$ is (a)

1600
(b) 2300
(c) 900
(d) 1200
(iii) The value ofy is
(a) 200
(b) 250
(c) 300
(d) 350
(iv) The value of $2 \mathrm{x}+3 \mathrm{y}=\cdots$
(a) 1000
(b) 1100
(c) 1200
(d) 1300
(v) The value of $y-x=\cdots$
(a) 100
(b) 200
(c) 300
(d) 400

ASSERTION AND REASON

1.In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true but R is not the correct explanation of A
(C) A is true but R is false
(D) A is False and R is True.
i)Let A be a 2×2 matrix

Assertion (A) : $\operatorname{adj}(\operatorname{adj} A)=A$
Reason (R) : \mid dd $|A|=|A|$
ii)Assertion (A): if $\left.\begin{array}{rll}2 & 0 & 0 \\ 0 & 3 & 0\end{array}\right] \quad$, then $A^{-1}=\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & 0 & 4\end{array} \begin{aligned} & \frac{1}{3} \\ & 0 \\ & {\left[\begin{array}{lll}0 & 0 & \frac{1}{4}\end{array}\right]}\end{aligned}$

Reason (R): The inverse of an invertible diagonal matrix is a diagonal matrix.
iii) Assertion (A) : if everyelement of a third order determinant of value Δ is multiplied by 5 , then the value of new determinant is 125Δ
Reason (R): If k is a scalar and A is an $n \times n$ matrix, then $|k A|=k^{n}|A|$
$13 \quad \gamma+2$
iv) Assertion (A): Ifthe matrix $\quad A=\left[\begin{array}{cccc}2 & & 4 & 8 \\ & 3 & 5 & 10\end{array}\right]$ is singular, then $\gamma=4$

Reason (R): If A is a singularmatrix, then $|A|=0$
v) Given $A=\left[\begin{array}{lr}2 & -3 \\ -4 & 7\end{array}\right]$

Assertion (A) : $2 \mathrm{~A}^{-1}=9 \mid-\mathrm{A}$
Reason (R): $A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$
vi) Assertion (A) : If $A=\left[\begin{array}{rl}2 & 3 \\ & 5\end{array} \mathbf{- 2}^{2} \quad\right.$ and $\quad A^{-1}=k A$, then $k=\frac{1}{9}$
$\operatorname{Reason}(\mathbf{R}):\left|A^{-1}\right|=\quad \frac{1}{|\mathrm{~A}|}$
vii) Consider the system of equations: $x+y+z=2, \quad 2 x+y-z=3$
and $3 x+2 y+k z=4$
Assertion (A): The system of equationshasuniquesolutionif $\quad k \neq 0$
Reason(R): The system of equations has unique solution if $|A|=1$
viii) Consider the system ofequations: $x+2 y+5 z=10, x-y-z=-2$ and $2 x+3 y-z=-11$ Assertion(A)
: Thesystem ofequationshas unique solution if $x=-1, y=-2$ and $z=3 \operatorname{Reason}(R)$: $\operatorname{lf}|A|=0$ then the system of linear equations has no solutions.

CONTINUITY AND DIFFERENTIABILITY

MULTIPLE CHOICE QUESTIONS

Q1. If $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$ and $g(x)=\frac{x^{2}}{2}+1$ then which of the following can be a discontinuous function?
(A) $F(x)+g(x)$
(B) $f(x)-g(x)$
(C) $f(x) . g(x)$
(D) $\frac{f(x)}{g(x)}$

Q2. The function $f(x)=\frac{4-x^{2} \text { is }}{4 x-x^{3}}$
(A) Discontinuous at only one point (B)Discontinuous at only two point (C)Discontinuous at only three point (D)none of theabove

Q3. The function $f(x)=e^{|x|}$ is
(A)Continuous everywhere but not differentiable at $\mathrm{x}=0$
(B)Continuous and differentiable everywhere
(C) Not continuous at $\mathrm{x}=0$
(D)Noneof the above

Q4. If $f(x)=x^{2} \sin \left({ }^{1}\right)$ where $x \neq 0$ then the value of the function f at $\mathrm{x}=0$, so that the function is continuous at $x=0$ is
(A) 0
(B) -1
(C) 1
(D) none of these

Q5.The derivative of $\cos ^{-1}\left(2 x^{2}-1\right)$ with respectto $\cos ^{-1} x$
(A) 2
(B) $\frac{-1}{2 \sqrt{1-x^{2}}}$
(C) $\frac{2}{x}$
(D) $1-x^{2}$

Q6.If $y=\sqrt{\sin \overline{x+y} \text {, then }} \quad \frac{d y}{d x}$ is equal to
(A) $\frac{\cos x}{2 y-1}$
(B) $\frac{\cos x}{\frac{1-2 y}{1-x^{2}}}$
(C) $\frac{\sin x}{1-2 y}$
(D) $\frac{\sin x}{2 y-1}$

Q7.If $y=\log \left(1+x^{2}\right)$, then ${ }_{4 x}$ is equalto

(A) $\frac{1-x^{4}}{}(\mathrm{~B})_{1-x^{4}} \quad$ (C) $\overline{1-x^{4}}$
(D) $\frac{}{1-x^{2}}$

Q8. Find the value of p and qsothat $f=\left(\begin{array}{cc}1-x^{4}\end{array} \begin{array}{cc}x^{2}+3 x+p & \text { if } \quad x \leq 1 \\ q x+2\end{array} \quad\right.$ if $\quad x>1$ is differentiable at $\mathrm{x}=1$
Q8. Findthevalue of pand qsothat $f=\left(\begin{array}{lll}() & \begin{array}{c}x^{-2}+3 x+p\end{array} & \text { if } \quad x \leq 1 \\ q x+2 & \text { if } \quad x>1\end{array}\right.$ is differentiable at $\mathrm{x}=1$
(A) $P=1, q=3$
(B) $p=3, q=5$
(C) $p=2, q=4$
(D) $p=3, q=6$

Q9.Findthevalue of $\xrightarrow{d y}$ at $\theta=\stackrel{\pi}{-}$ if $x=\operatorname{asec}^{3} \theta$ and $x=\operatorname{atan}^{3} \theta$ is

$\begin{array}{lc}d x \\ \text { (B) }-\underline{\sqrt{3}}^{2}- & 3 \\ \text { dy } & (\mathrm{C})_{2}^{1}\end{array}$
(D) 1

Q10. If $x^{y}=e^{x-y}$

(A) $\frac{1+\log x}{1+}$
(B) $\frac{1-\log x}{1+\log x}$ (C) $\frac{x}{1+\log x}$
(D)

Q11. Differential coefticient of sectan ${ }^{-1} x$) is
(A) $\frac{x}{1+x^{2}}$
(B) $x \sqrt{1+\overline{x^{2}}}$
(C) $\frac{x}{\sqrt{1+x^{2}}}$
(D) $\frac{1}{\sqrt{1+x^{2}}}$

Q12. $\operatorname{lisin}(x+y)=\log (x+y)$ then ${ }^{d y}$

(A) 2
(B) -2
(C) 1
(D) -1

Q13.If $t=e^{x} \quad$ and $y=t \cdot 1$ then ${ }^{d y} \quad-\quad$ att $=1$ is
(A) $\frac{1}{2 e^{2}}$
(B) $\frac{1}{2}$ (C) 2
(D) $2 e^{2}$

Q14.|f $\left.8 f(x)+6 f^{1}\right)=x+5$ and $y=x^{2} f(x)$ then the vaue of ${ }^{d y}$ at $\mathrm{x}=.1$ is
(A) 0
(B) ${ }^{1}-$
(C) $\frac{-1}{14}$
(D) 1

Q15. If $=\log \sqrt{\tan x}$, then the value of ${ }^{d y} \quad-\overline{d x} \quad$ at $x={ }^{\pi}$ is $\overline{4}_{4}$
(A) ∞
(B) 1
(C) 0
(D) ${ }^{1}-$

Q16. If $\sin y=\operatorname{acos}(a+y)$ then ${ }^{d y}$
$\overline{d x}$ is equal to
$(A)^{\cos ^{2}(a+y)} \frac{\cos a}{}$
(B) $\frac{\cos a}{\cos ^{2}(a+y)}$
(C) $\frac{\sin ^{2}(a+y)}{\cos a}$
(D) $\frac{\cos ^{2}(a+y)}{\sin a}$
Q17. If $y=\tan ^{-1}\left[\frac{\sin x+\cos x}{}\right]$ then ${ }^{d y}$
_ is equal to
$(A)^{1}-(B) 0$
$\cos x-\sin x$
$d x$

Q18. $\| y=\sin ^{-1}\left[\left[^{1-x^{2}}\right]^{d y}\right.$ \qquad is equal to
(A) ${ }^{-2}$ \qquad
(B)

(C) \qquad
(D) ${ }^{2}$ \qquad
$1+x^{2}$
$1+x^{2} \quad 2-x^{2}$
$2-x^{2}$

(A) 1 for $x<-3(B) \cdot 1$ for $x<-3 \quad$ (C) 1 for all $x \in R$
(D)none of these Q20. If $f(x)$
$=\left|x^{2}-9 x+20\right|$ then $f^{\prime}(x)$ is equal to
(A) $2 x+9$ for all $x \in R(B) 2 x \cdot 9$ if $4<x<5(C) \cdot 2 x+9$ if $4<x<5$
5 (D)none of these Q21.II $f(x)=\sqrt{ } x^{2}$
$f(x)$ in the interval $[0,7]$ is $(A) 1$
(B) -1
(C)0 (D)none of these Q22.

Derivative of $\sin x$ writ $\cos x$ is
(A) $-\cot x(\mathrm{~B}) \cot \mathrm{x}$
(C) $\tan x$
(D)none of these

Q23. If $y=\log 3 x| | x \neq 0$, then ${ }^{d y}$ is
$\overline{d x}$
$\begin{array}{lll}\text { (A) } \frac{3}{x} & \text { (B) } \frac{1}{x} & \text { (C) } \frac{1}{3 x} \\ \end{array}$
Q24. If $|x|<1$ and $y=1+x+x^{2}+\cdots$ tooo, then ${ }^{d y}$ is
(A) $\frac{1}{\left(1-x^{2}\right)^{2}}$ (B) $\frac{1}{\left(1+x^{2}\right)^{2}}$
$(C)\left(1-x^{2}\right)^{2}$
(D)none of these

Q25. If $y=\sec ^{-1}\left({ }^{x+1}\right)+\sin ^{-1}\left(\frac{\left(^{x-1}\right.}{x-1}\right)$, then ${ }^{d y}$ is $\quad \overline{x+1} \quad \overline{d x}$
(A) 0
Q26. If $y=\log \sqrt{\tan x}$, then ${ }^{(\mathrm{By} y}{ }^{\text {is }} 1$
(C) -1
(D)none of these
(A) $\cos 2 x$ (B) $\sin 2 x$
(C) $\operatorname{cosec} 2 x$
(D)none of these Q27. If $y=$
$\sin \left(m \sin ^{-1} x\right)$ then $\left(1-x^{2}\right) y_{2}-x y_{1}$ is equal to
(A) $m^{2} y \quad$ (B) $m y$
(C) $-m^{2} y$
(D)none of these Q28. If $y=$
$\left(\sin ^{-1} x\right)^{2}$, then $\left(1-x^{2}\right) y_{2}$ is equal to
(A) $x y_{1}+2$ (B) $x y_{1}-2$
(C) $-x y_{1}+2$
(D)none of these

Q29. Find the value of k for which the function $f(x)=\{$

$$
\begin{array}{cl}
\frac{x^{2}+3 x-10}{x-2} & , x \neq 2 \\
k & , x=2
\end{array}
$$

(A) 5
(B) 1
(C) 7
(D) 10

Q30. If $f(x)=\left\{\begin{array}{ll}x-4 \quad x^{2}-16 \\ \end{array} \quad x \neq 4 \quad\right.$ is continuous at $\mathrm{x}=4$, ind k

$$
k \quad, \quad x=4
$$

(A) 3
(B) 5
(C) 10
(D) 8

CASE STUDY QUESTIONS

CASE STUDY-1

The relation between the height of the plant (y in cm) with respect to exposure to sunlight is governed bythe equation $\mathrm{y}=4 \mathrm{x}-\frac{1}{2} x^{2}$ where x is the number of days exposed to sunlight.

1. What will be the height of the plant after 2 days ?
a. 4 cm
b. 6 cm
c. 8 cm
d. 10 cm
2. Forwhat valueofx, $\frac{d y}{d x}=0$
a. 3
b. 4
c. 5
d. 2
3. Forthevalue of x where $\overline{d x}=0$ the height of the plant is maximum. What is the maximum height of the plant?
a. 4 cm
b. 6 cm
c. 8 cm
d. 10 cm
4. Whatisthevalueof ${ }_{d x^{2}}^{\frac{d^{2} y}{2} a t \mathrm{x}=2 \text { ? }}$
a. -2
b. -4
c. -5
d. -1
5. If $\mathrm{y}=e^{x} \sin x$ what is ${ }^{d^{2} y} \cdot \frac{}{d x^{2}}$
a. $e^{x}(\sin x+\cos x)$
b. $2 e^{x} \cos x$
c. $2 e^{x} \sin x$
d. none of these

CASE STUDY-2

A potter made a mud vessel, where the the shape of the pot is based on $f(x)=|x-3|+|x-2|$, where $f(x)$ represents height of the pot.

1. When $x>4$ what will be the height in terms of x ?
a. $x-2$
b. $x-3$
c. $2 x-5$
d. $5-2 x$
2. Whatis $\frac{d y}{d x}$ at $\mathrm{x}=3$?
a. 2
b. -2
c. Function is notdifferentiable
d. 1
3. When the value of x lies between $(2,3)$ then the function is
a. $2 x-5$
b. $5-2 x$
c. 1
d. 5
4. If the potter is trying to make a pot using the function $f(x)=[x]$ will he get a pot or not ?
a. Yes, because it is a continuous function
b. Yes, because it is not a continuous function
c. No, because it is a continuous function
d. No, because it is not a continuous function
5. What is the value of derivative of $f(x)=[x]$ at the point $x=8$?
a. 1
b. $f(x)$ is not differentiable at $x=8$
c. 0
d. none of these

CASE STUDY- 3

Amanufacturercansellxitemsatapriceofrupees(5-
$\frac{x}{100}$)each.Thecostpriceofxitemsisrupees($\left.\quad \frac{x}{5}+500\right)$.

Then answer the followings:

1. What willbethevalue ofselling pricefunctionS(x):
x^{2}
a. $5 x+\left(\frac{}{100}\right)$
b. $10 \mathrm{x}+\left(\frac{x^{2}}{100}\right)$
c. $5 \mathrm{x}-\left(\frac{x^{2}}{100}\right)$
d. 10x-($\frac{x^{2}}{100}$
2. The value of profit function $\mathrm{P}(\mathrm{x})$ willbe:
a. $\left(\frac{24}{5}\right) x+\left(\frac{x^{2}}{100}\right)+500$
b. $\left(\frac{24}{5}\right) \mathrm{x}+\left(\frac{x^{2}}{100}\right)-500$
c. $\left({ }^{24}\right) x-\left({ }^{5} \quad x^{2}\right.$
)+
500
d. $\left(\frac{24}{5}\right) \mathrm{x}-\left(\frac{x^{2}}{100}\right)-500$
3. The derivative of profit function $\mathrm{P}(\mathrm{x})$ is:
a. $\frac{24}{5}^{x} \frac{}{50}$
b. $\frac{24}{5}+{ }^{x} \frac{}{x 0}$
c. $-\frac{24}{5}^{x} \frac{}{50}$
d. $-{\frac{24}{5}+{ }^{x}}_{50}$
4. The second derivative of profit function $P(x)$
a. $\frac{1}{50}$
b. $\frac{-1}{50}$
c. 1
d. 0
5. For what value of $P(x), P^{\prime}(x)=0$ a.

120
b. 60
c. 240
d. 24

CASE STUDY- 4

A gardener wants to construct a rectangular bed of garden in a circular patch of land. He takes the maximum perimeter of the rectangular region as possible. Refer the image. Radius of the circular patch of land is a. In the rectangular region he wants to plant flowers.

1. The perimeter function $\mathrm{P}(\mathrm{x})$ of rectangle is:
a. $x+\sqrt{a^{2}-x^{2}}$
b. $2 x+2 \sqrt{a^{2}-x^{2}}$
c. $2 x+2 \sqrt{4 a^{2}-x^{2}}$
d. $4 x+4 \sqrt{a^{2}-x^{2}}$
2. The area function $A(x)$ of rectangle is:
a. $x \sqrt{a^{2}-x^{2}}$
b. $2 x \sqrt{a^{2}-x^{2}}$
c. $2 \times \sqrt{4 a^{2}-x^{2}}$
d. $x \sqrt{4 a^{2}-x^{2}}$
3. The derivative of perimeter function $P^{\prime}(x)$ is :
a.

d.

$$
\sqrt{ } a^{2}-x^{2}
$$

4. The derivative of area function $A^{\prime}(x)$ is :
a.
\qquad
$\frac{\sqrt{4 a-x^{2}}}{2\left(2 a^{2}-x^{2}\right)}$
b.
\qquad
c. \qquad
d.

$$
\sqrt{4} a^{2}-x^{2}
$$

5. The value of x at which $P^{\prime}(x)=0$ is
a. $\frac{a}{2}$
b. $\frac{a}{\sqrt{2}}$
c.2a
d. $\sqrt{2}{ }^{-}$

ASSERTION AND REASON

DIRECTION: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.
(e) Both Assertion (A) and reason (R) are false.

1. $\operatorname{Assertion}(A): f(x)=\tan ^{2} x \quad$ iscontinuousat $x=\cdot \frac{\pi}{2}$
Reason $(R): x^{2}$ Reason(R): x^{2} is continuous at $x=\frac{\pi}{2}$
2. Assertion(A): $f(x)=|\sin x|$ is continuous for all $x \in R$ Reason (R) : $\sin x$ and $|x|$ arecontinuous at on R.
3. Assertion $(A): f(x)=|\sin x|$ is continuous $x=0$.

Reason (R) : $|\sin x|$ is differentiable at $x=0$.
4. Considerthefunction $\mathrm{f}(\mathrm{x})=f(x)=\left\{|x| \quad-\quad{ }^{k x}, x<0\right.$

Which is continuous at $\mathrm{x}=0$.

Assertion(A): The value of k is -3 .
Reason(R): $x=\{$

```
-x,x<0
```

 \(x \quad x \geq 0\)
 5. Consider the function $\quad f(x)=\left\{\begin{array}{r}\frac{x^{2}+3 x-10}{x-2}, x \neq 2 \\ k, x=2\end{array} \quad\right.$ Which is continuous at $\mathrm{x}=2$.

Assertion(A): Thevalueofkis0.

Reason $(R): f(x)$ is continuous at $x=a$ if $\lim f(\underset{\substack{x \rightarrow a \\ x \rightarrow a}}{f(a)}$.
6. Assertion $(A): f(x)=[x]$ isnotdifferentiableat $x=2$.

Reason $(R): f(x)=[x]$ is not continuous at $x=2$.
7. Assertion(A): A continuous funection is always differentiable.

Reason(R): Adifferentiablefunctionisalwayscontinuous.
8. Assertion(A): If $x=t^{2}$ and $y=t^{3}$ then ${ }^{d^{2} y} \frac{=^{3}}{d x^{2}} \quad \frac{}{4 t}$

$$
\text { Reason(R): } \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{3}{2} t\right)=\frac{3 d t}{2} \frac{d x}{d x} .
$$

9. Assertion(A): If $y=x^{x}$ then ${ }^{d y} \operatorname{can}_{d x}$ be found by applying the formula of ${ }^{d}\left(x^{n}\right)=\mathrm{n} x_{d x}^{n-1}$

Reason(R):Using logarithm the derivative of $y=x^{x}$ can befound.
10.Assertion(A): If $y=\tan ^{5} x$ then $\begin{aligned} & d y=5 \tan ^{4} x \\ & d x\end{aligned}$

$\text { Reason (R): } \frac{d}{d x} \frac{\left(x^{n}\right)}{d x} x^{n-1}$		2	on(A): $\mathrm{If} \mathrm{e}^{x+y}=x y$ then ${ }^{\text {dy }}$ is ${ }^{y(1-x)}$.
.Assertion(A): $17 y=\log \sqrt{\tan } \times$	value of	.	
Reason(R):Thevalueoflog	tdefined.	A	

```
at \({ }^{\pi}\) is \(\infty\),
\(x^{4}\)
\(=\)
```

Reason (R) : The value of $\log \mathrm{e}=1$
$x(y-1)$

APPLICATION OF DERIVATIVES

MULTIPLE CHOICE QUESTIONS

Q. 1. The function $f(x)=\tan x-x$ is:
a) alwaysincreasing
b) always decreasing
c) not always decreasing
d) sometimes increasing and sometimes decreasing Q. 2 .

The function $f(x)=x^{3}-6 x^{2}+15 x-12$ is:
a) strictly decreasing on R
b) strictly increasing on R
c) increasing on $(-\infty, 2]$ and decreasing on $(2, \infty)$
d) none of these
Q. 3. The function $f(x)=4-3 x+3 x^{2}-x^{3}$ is:
a) decreasing on R
b) increasingon R
Q.4.Thefunction $f(x)=$

$$
\frac{x}{\sin x} \text { is: }
$$

c) strictly decreasing on R d) strictly increasing on R
a) increasing in $(0,1)$
b) decreasing in $(0,1)$
c) increasing in (0
${ }^{1}$) and decreasing in $\left(\begin{array}{ll}1 & 2,0\end{array}\right)$
d) none of these
Q. 5. Is the function $f(x)=\cos \left(2 x+{ }^{\pi}\right)$; is increasing or decreasing in the interval $\left({ }^{3 \pi},{ }^{7 \pi}\right) \quad \frac{-}{8} \quad-$
a) increasing
b) decreasing
c) neither increasing nor decreasing
d) none ofthese
Q. 6. The function $f(x)=x^{x}$ is decreasing in the interval:
a) $(0, e)$
b) $\left[0, \frac{1}{-}\right)$
c)) $(0,1)$
d) none of these
Q. 7. The function $f(x)=[x(x-3)]^{2}$ is increasing in :
a) $(0, \infty)$
b) $(-\infty, 0)$
c) $(1,3)$
d) $[0,1.5] \cup(3, \infty)$
Q. 8. The function $f(x)=\frac{x}{{ }^{2} x+1}$ is increasing in :
a) $(-1,1)$
b) $(-1, \infty)$
c) $(-\infty,-1) \cup(1, \infty)$
d) none of these
Q.9. Which of the following functions are strictly decreasing on $(0,) \frac{\pi}{2}$
(a) $\operatorname{Cos} x$
(b) $\tan 2 x$
(c) $\operatorname{Cos} 3 x$
(d) $\tan x$
Q.10. Theleastvalueofasuchthat $\mathrm{f}(\mathrm{x})=x^{2}+\mathrm{ax}+1$ is strictlyincreasingon $(1,2)$ is (a)
2
(b)
-4
(c) 2
(d) 4
Q.11. The two curves $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y^{2}-y^{3}=2$
(a) Toucheachother
(c) Cut at an angle $\pi / 3$
(b) Cutatrightangle
(d)Cutatanangle $\pi / 4$
Q. 12. The tangent to the curve given by $x=e^{t} \cdot \cos t, y=e^{t} \cdot \sin t$ at $t=\pi / 4$ makes with x-axis an angle
(a) 0
(b) $\pi / 4$
(c) $\pi / 3$
(d) $\pi / 2$
Q. 13. The equation of the normal to the curve $y=\sin x$ at $(0,0)$ is
(a) $x=0$
(b) $y=0$
(c) $x+y=0$
(d) $x-y=0$
Q.14. The point on the curve $y^{2}=x$, where the tangent makes an angle of $\pi / 4$ with x-axis is $(a)(1 / 2,1 / 4)$
(b) $(1 / 4,1 / 2)$
(c) $(4,2)$
(d) $(1,1)$
Q.15. Theslopeofnormaltothecurve $y=2 x^{2}+3 \sin x a t x=0$ is $(a)-1 / 3$
(b) $1 / 2$
(c) $1 / 3$
(d) 3
Q.16. The line $y=x+1$ is atangenttothecurve $y^{2}=4$ xatthepoint $(a)(1,2)$
(b) $(2,1) \quad(-1,2) \quad$ (d) $(-1,-2)$
Q.17.The equation of the normaltothecurve $3 x^{2}-y^{2}=8$ whichisparalleltotheline $x+3 y=8$ is
(a) $x+3 y=8(b) x+3 y+8=0$
(c) $x+3 y \pm 8=0$
(d) None of These
Q. 18. The tangent to the curve $y=e^{2 x}$ at the point $(0,1)$ meets x-axis at
(a) $\left(\frac{-1}{2}, 0\right)(b)\left(\begin{array}{l}-, 0) \\ 2\end{array}\right.$
(c) $\left(^{2}-\frac{0}{3}\right)$
(d) None these
Q..19.Theslopeoftangenttothecurve $\mathrm{x}=\mathrm{t}^{2}+3 \mathrm{t}-8$ andy $=2 \mathrm{t}^{2}-2 \mathrm{t}-5$ att $=2$ is (a) $7 / 6$
(b)
6/7
(c) $-7 / 6$
(d) $-6 / 7$
Q.20.Theabscissaofthepointonthecurve $3 y=6 x-5 x^{3}$, thenormalatwhichpassesthroughtheoriginis (a) 1 (b) 2

$$
\begin{array}{ll}
(, \mathrm{c})-1 & \text { (d) }-2
\end{array}
$$

Q. 21 TheEquationnormaltothecurve $y=x+\operatorname{Sin} x+\operatorname{Cos} x$ at $x=\quad \frac{\pi}{2}$ is
a) $x=2$
b) $\quad x=\pi$
c) $\quad x+\pi=0$
d) $2 x=\pi$
Q. 22 The Point on the curve $\mathrm{y}=\mathrm{x}^{2}-3 \mathrm{x}+2$ where tangent is perpendicular to $\mathrm{y}=\mathrm{x}$ is
a) $(1 / 2,1 / 4)$
b) $\quad(1 / 4,1 / 2)$
c) $(4,2)$
d) $(1,1)$
Q. 23 The point on the curve $y^{2}=x$ where tangent makes 45° angle with x-axis is
(a) $(0,0)$
(b) $(2,16)$
(c) $(3,9)$
(d) none of these
Q. 24 The angle between the curves $y^{2}=x$ and $x^{2}=y$ at (1,1)is:
(a) $\tan ^{-1^{4}} \frac{-}{3}$
(b) $\tan ^{-11^{3}} \frac{-}{4}$
(c) 90°
(d) 45°
Q. 25 At what point the slope of the tangent to the curve $x^{2}+y^{2}-2 x-3$ is zero?
a) $(3,0),(-1,0)$
(b) $(3,0),(1,2)$
(c) $(-1,0),(1,2)$
(d) $(1,2),(1,-2)$
Q. 26 If the curve ay $+x^{2}=7$ and $x^{3}=y$ cut each other at 90^{0} at $(1,1)$, then value of a is :
a) 1
b) -6
c) 6
d) 0
Q. 27 The equation of normal $x=\operatorname{acos}^{3} \theta, y=a \sin ^{3} \theta$ at the point $\theta=\pi / 4$ is
a) $x=0$
b) $y=0$
c) $x=y$
d) $x+y=a$
Q. 28 The angle of intersection of the parabolas $y^{2}=4 a x \quad$ and $x^{2}=4$ ayatthe origin is a)
$\pi / 6$
b) $\pi / 3$
c) $\pi / 2$
d) $\pi / 4$
Q.29. The line $y=x+1$ touches $y^{2}=4 x$ at the point
a)
$(1,2)$
b) $(2,1)$
c) $(1,-2)$
d) $(-1,2)$
Q. 30 The tangent to the curve $\mathrm{y}=\mathrm{e}^{2 \mathrm{x}}$ at the point $(0,1)$ meets x -axix at
a) $(0,1)$
b) $[-1 / 2,0]$
c) $(2,0)$
d) $(0,2)$
Q. 31 The Curve $y=4 x^{2}+2 x-8$ and $y=x^{3}-x+13$ touch each other at the point
a) $(3,23)$
b) $\quad(23,-3)$
c) $(34,3)$
d) $(3,34)$
Q. 32 TheMaximumvalue of $f(\mathrm{x})=\frac{\log x}{x}$ is
a) $1 / e$
b)
2/e c)
e
d) 1
Q. 33 The maximum value of $x^{2}+\frac{250}{x}$ is
a) 0
b) 25
c) 50
d) 75
Q. 34 Theequationoftangentatthosepointswherethecurve $=x^{2}-3 x+2$ meets x-axisare a)
$x-y+2=0, x-y-1=0$
b) $x-y-1=0, x-y=0$
c) $x+y-1=0, x-y-2=0$ d) $x-y=0, x+y=0$
Q. 35 The value of $f(x)=(x-2)(x-3)^{2}$ is
a) $7 / 3$
b) 3
c)
4/27
d) 0
Q. 36 The Least value $f(x)=e^{x}+e^{-x}$
a) -2
b) 0
c) 2
d) can't be determine
Q. 37 The maximum value of $y=\sin x \cdot \cos x$ is
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\sqrt{2}-$
(d) $2 \sqrt{2}$
Q.38. If the function $f(x)=x^{3}+a x^{2}+b x+1$ is maximum at $x=0$ and $x=1$ then :
(a) $a=\frac{2}{3}, b=0(b) a=-\frac{3}{2}, b=0$
(c) $a=0, b=\frac{3}{2}$
(d) None of These
Q. 39 The smallest value of polynomial $3 x^{4}-8 x^{3}+12 x^{2}-48 x+1$ in [1, 4]is: a)
-49
b)
59
c)
d)
257
Q. 40 The function $f(x)=2 x^{3}-3 x^{2}-12 x+4$, has:
a) Twopointsoflocalmaximum
b) Two points of local minimum
c) one maxima and one minima
d) no maxima or minima
Q. 41 The sum of two non-zero numbers is 8 , the minimum value of the sum of their reciprocals is:
a) $1 / 4$
b) $1 / 2$
c)
1/8
d) None ofthese
Q. 42 The point on the curve $x^{2}=2 y$ which is nearest to the point $(0,5)$ is
a) $(2 \sqrt{ } 2,4)$
b) $\quad(2 \sqrt{ } 2,0)$
c) $(0,0)$
d) $(2,2)$
Q. 43 The maximum value of $[x(x-1)+1]^{1 / 3}, 0 \leq x \leq 1$ is
a) $\quad\left(\underset{3}{1} 3^{3}\right.$
b) $1 / 2$
C) 1
d) 0

CASE STUDY QUESTIONS

1. Yash wants to prepare a handmade gift box for his friend's birthday at his home. For making lower part of the box, he took a square piece of paper of each side equal to 10 cm .

Based on the above information answer the following questions.
(i) Ifxcmbethesizeofsquarepiececutfromeach cornerofthepaperofsize 10 cm , then possible value of x will be given by interval
(a) $(0,10)$
(b) $(5,10)$
(c) $(0,5)$,
(d) $(10,15)$
(ii) Volume of the open boxformed by folding up the cutting corner can be expressed as
(a) $V=2 x(10-2 x)(10-2 x)$
(b) $V=x(10-2 x)(10-2 x)$
(c) $V=x(10-x)(10-2 x)$
(d) $V=x(10-x)(10-x)$
(iii) Thevalueofxforwhich $\frac{d V}{d x}=0$ is
(a) 0,5
(b) $5 / 3,0$
(c) $5 / 3,5$
(d) 3,4
(iv) Yashisinterestedtomaximisethevolumeofthebox,Sowhatwillbethesideofthe square to be cut to maximise the volume
(a) 5 cm
(b) $5 / 3 \mathrm{~cm}$
(c) 3 cm
(d) 4 cm
(v)The maximum volumeis
(a) ${ }^{1000} \mathrm{~cm}^{3}$
(b)
$\frac{3000}{27}$
cm
(c)
cm
(d) $\quad \mathrm{cm}$
27
$\frac{2000}{27}$
$\frac{100 \mathrm{~g}}{3}$
2. Atankwithrectangularbaseoflengthxmetre,breathymetreand rectangularside, open at the top is to be constructed so that the depth is 1 m andvolume is $9 \mathrm{~m}^{3}$. If buildingof tankisRs70persquaremetreforthebaseandRs45persquaremetrefor the sides?

Based on above information answer the following questions.
(i) What is the cost of the base?
(a) $9 x y$
(b) $70 x y$
(c) $x y$
(d) $50 x y$
(ii) What is the cost of making all the sides?
(a) $90(x+y)$
(b) $90 x y$
(d) $9(\mathrm{x}+\mathrm{y})$
$\frac{d C}{d x}$ is
(d) $40(x+y)$
(iii) If 'C' be the total cost of the tank, then $\frac{d C}{d x}$ is
(a) $90\left(1-\frac{9}{x^{2}}\right)$
(b) $70(1-)^{9}$
(c) $180\left(1-\frac{8}{x^{2}}\right)^{8}$
(d) $140\left(1-\frac{9}{x^{2}}\right)^{9}$
(iv) For what value of x, C is minimum?
(a) 2
(b) 1
(c) 3
(d) 5
(iv) What is the least cost of construction?
(a)Rs1000
(b) Rs 1170
(c)Rs 1270
(d) 1570
3. There is a bridge whose length of three sides of a trapezium other than base are equal to 5 cm

Based on the above information answer the following
(i) What is the value of DP
(a) $\sqrt{25-x^{2}}$
(b) $\sqrt{x^{2}-25}$
(c) $25-x^{2}$
(d) $x^{2}-25$
(ii) What is the area of the trapezium $\mathrm{A}(\mathrm{x})$? (a)
$(x+5) \sqrt{25}-x^{2}$
(b) $(x-5) \sqrt{25-x^{2}}$
(c) $(x .5)\left(25-x^{2}\right)$
(d) (x.10) ($\left.\mathrm{x}^{2}-100\right)$
(iii) $A^{\prime}(x)=0$ then what is the value of x ?
(a) $5,-10$
(b) $2.5,-5(\mathrm{c})-5,-2.5$
(d) 5,10
(iv) What is the value of $A^{\prime \prime}(2.5)$
(a) $-\frac{15}{\sqrt{1875}}$
(b) $-\frac{30}{\sqrt{1875}}$
(c) $\frac{15}{\sqrt{1875}}$
(d) $-\frac{30}{\sqrt{80}}$
(v) What is the value of maximum area ?
(a) $75 \sqrt{18.75 \mathrm{~cm}^{2}}$
(b) $10 \sqrt{18.75 \mathrm{~cm}^{2}}$
(c) $75 \sqrt{5} \mathrm{~cm}^{-}$
(d) $75 \sqrt{7} \mathrm{~cm}^{2}$
4. A piece of wire of length 25 cm is to be cut into pieces one of which is to bent into the form of a square and other into the form of a circle.

Based on the above information, answer the following question:
(i) What is the total area of the square and circle?
(a) $\left(f^{x_{2}} 2^{4}+\pi r^{2}\right.$
(b) $\left(\frac{1}{2}^{2}+\pi r^{2}\right.$
(c) $\left(\frac{x}{4}\right)^{2}+\pi r$
(d) ()$_{2}^{x}+\pi r$
(ii) What is the relation of r with y ?
(a) $r=\frac{y}{\pi}$
(b) $r=\frac{y}{2 \pi}$
(c) $\mathrm{r}=\frac{x y}{\pi}$
(d) $r=\frac{x y}{2 \pi}$
(iii) If we talk about total length of wires then what is the relation between x and y ?
(a) $X+y=25$
(b) $x+y=28$
(c) $x+y=26$
(d) $x+y=27$
(iv) When $\frac{d A}{d y}=0$, then find the value of y
(a) $\frac{50 \pi}{\pi+4}$
(ii) $\frac{75}{\pi+8} d$
(C) $\frac{25 \pi}{\pi+4}$
(d) $\frac{100}{\pi+8}$
(v) Again, when $\overline{d y}=0$, then the value of x.
(a) $\frac{50}{\pi+4}$
(b) $\frac{100}{\pi+4}$
(c) $\frac{25}{\pi+4}$
(d) $\frac{50 \pi}{\pi+4}$
5. Thesumofthelengthhypotenuseandasideofaright-angledtriangleisgivenby $A C+B C=10$

Based on the above information answer the following questions:
(i) Base $\mathrm{BC}=$?
(a) $\frac{100-c^{2}}{20}$
(b) $\frac{100+c^{2}}{20}$
(c) $\frac{c^{2}-100}{20}$
(d) $\frac{10-c^{2}}{20}$
(ii) If ' S ' bethearea of the triangle, thenfind thevalue of
dS
$\overline{d c}$?
$100-3 c^{2}$
(b) $\frac{100-3 c^{2}}{40}$
(c) $\frac{3 c^{2}-100}{20}$)
(d)
$100+3 c^{2}$
(a) -20
(d) $\frac{}{40}$
(iii) Whatarethevaluesofcwhen $\overline{d c}=0$?
(a) ${ }^{10 \sqrt{3}}$
(b) $\frac{20 \sqrt{3}}{3}^{-}$
(c) ${ }^{\frac{5 \sqrt{3}}{}}{ }_{3}^{-}$
(d) $\frac{15 \sqrt{3}}{3}$
(iv) Find the values of $\frac{d^{2} S}{d c^{2}}$ at $\mathrm{c}=\frac{10 \sqrt{3}-}{3}$
(a) $-\frac{3}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\frac{-\sqrt{3}}{2}$
(c) $\frac{1}{2}$
(v) Find $B C$, when $c=5 \sqrt{3}$
(a) ${ }_{4}^{5}$
(b) ${ }_{3}^{5}$
$(c)^{5}-(d)^{7}-$
6. The frontgateofa building is inthe shapeof atrapeziumas shownbelow. Its three sides otherthan baseare 10meach.Theheightofthegateishmeter.Onthebasisofthisinformationandfiguregiven below answer the following questions:

(i) .TheareaAofthegateexpressedasafunctionofxis a.
$(10+\mathrm{x}) \sqrt{100}+x^{2}$
b. $(10-\mathrm{x}) \sqrt{ } 100+x^{2}$
c. $(10+\mathrm{x}) \sqrt{100-x^{2}}$
d. $(10-\mathrm{x}) \sqrt{100-x^{2}}$
(ii). Thevalueof $\frac{d A}{d x}$ is
a. $\frac{2 x^{2}+10 x-100}{\sqrt{100-x^{2}}}$
b. $\frac{2 x^{2}-10 x-100}{\sqrt{100-x^{2}}}$
c. $\frac{2 x^{2}+10 x+100}{\sqrt{100-x^{2}}}$
d. $\frac{-2 x^{2}-10 x+100}{\sqrt{100-x^{2}}}$
(iii). Forwhich positive value of $\mathrm{x}, \quad \frac{d A}{d x}=0$
a. 10
b. 5
c. 20
d. 15
(iv). Ifat the value of xwhere $\frac{d A}{d x}=0$ areaoftrapezium is maximumthenwhatis maximumareaoftrapezium ?
a. $25 \sqrt{3} \mathrm{sqm}$
b. $100 \sqrt{3} \mathrm{sqm}$
c. $75 \sqrt{3} \mathrm{sqm}$
d. $50 \sqrt{3} \mathrm{sqm}$
(v). If the area of trapezium is maximum then the value of $d^{2} \frac{A_{i s}}{d x^{2}}$
a. positive
b. negative
c. 0
d. none of these

ASSERTION AND REASON

1. Assertion (A) : The tangent to the curve $y=x^{3}-x^{2}-x+2$ at $(1,1)$ is parallel to the x - axis .

Reason (R): The slope of the tangent to the curve at $(1,1)$ is zero.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
2. . Assertion (A) Tangent to the curve $y=2 x^{3}+x^{2}+2$ at the point $(-1,0)$ is parallel to the line $y=4 x+3$ Reason (R): Slope of the tangent at $(-1,0)$ is 4 equal to the slope of the given line .
A. A is false but R is true
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. Both A and R are true and R is the correct explanation of A
3. Assertion (A) : Function $f(x)=x^{3}-3 x^{2}+3 x+2$ isalwaysincreasing. Reason(R):Derivative $f^{\prime}(x)$ is always negative.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
4. Assertion(A): $\mathbf{Y}=\boldsymbol{s i n} \mathbf{x}$ is increasing in the interval $\left({ }_{2}^{\pi} \pi\right)$

Reason(R): $\frac{d y}{d x}$ is negative in the given interval.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
5. Assertion(A): $y=e^{x}$ is always strictly increasing function.

Reason (R): $\begin{gathered}d x \\ d x \\ = \\ e^{x}>0\end{gathered}$ for all real values of \mathbf{x}.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
6. Assertion(A): $y=\log (1+x)-^{2 x} \quad \overline{2+x}, x>-1$ is a decreasing function of x throughout its domain
Reason (R): $\frac{d y}{d x}>0$ for all $x>-1$
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
7. Assertion(A): Function $f(x)=x+{ }_{x}^{1}$ is strictly increasing in the interval $(-1,1)$

Reason(R): Derivative $f^{\prime}(x)<0$ in the interval
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
8. Function $f(x)=$ logcos x is strictly increasing on $\left(0_{1}^{\pi}\right)_{2}$

Reason(R): Slope of tangent on the above curve is negative in the given interval.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
9. Assertion (A): Slope of the tangent to the curve $y=3 x^{4}-4 x$ at $x=4$ is 764 Reason (R): The value of $\frac{d y}{d x}=12 x^{3}-4$ is 764 at $\mathrm{x}=4$
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
10. Assertion(A): Tangents to the curve $y=7 x^{3}+11$ at the points where $x=2$ and x = $\mathbf{- 2}$ are parallel.
Reason(R): Slope of tangents at both the points are equal.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
11. Assertion (A) : At the $(3,27)$ on the curve $y=x^{3}$, slope of the tangent is equal to y coordinate of the point.
Reason (R): $\frac{d y}{d x}=3 x^{2}=27$ at $x=3$
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
12. Assertion(A): The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the point $(1,2)$.

Reason (R) : Slope of tangent to the given curve at the given point is 1 and the point also satisfies equation of the line.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
13. Assertion (A): $\mathrm{x}=0$ is the point of local maxima of the function f given by $\boldsymbol{f}=$ $3 x^{4}+4 x^{3}-12 x^{2}+12$
Reason(R): $f^{\prime}(x)=0$ at $x=0$ and also $f^{\prime \prime}(x)<0$ at $x=0$
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
14. Assertion (A): Maximum value of the function $f(x)=(2 x-1)^{2}+3$ is 3 . Reason(R): $f(x) \geq 3$ for all real values of x.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true
15. Assertion $f(x)=e^{x}$ do not have maxima and minima Reason (R) : $\mathrm{f}^{\prime}(\mathrm{x})=e^{x} \neq 0$ for all real values of x .
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct explanation of A
C. A is true but R is false
D. A is false but R is true

LINEAR PROGRAMMING

MULTIPLE CHOICE QUESTIONS

1. A Linear function, which is minimized or maximized is called
(a) anobjectivefunction
(b) an optimalfunction
(c) Afeasiblefunction
(d) None ofthese
2. Themaximumvalueof $Z=3 x+4 y$ subjecttotheconstraints: $x+y \leq$ $4, x \geq 0, y \geq 0$ is :
(a) 0
(b) 12
(c) 16
(d) 18
3. The maximum value of $Z=2 x+3 y$ subjectto the constraints: $x+y \leq 1,3 x+y \leq 4, x, y \geq 0$ is
(a) 2
(b) 4
(c) 5
(d) 3

4 Thepointinthehalfplane $2 x+3 y-12 \geq 0$ is: (a) $(-7,8)$
(b) $(7,-8)$
(c) $(-7,-8)(d)$
(d) $(7,8)$
5. Any feasible solution which maximizes or minimizes the objective function is Called:
(a) A regionalfeasible solution
(b)An optimal feasible solution
(c)An objective feasible solution (d) None of these
6. The solution set of the in equation $2 x+y>5$ is
(a) Half plane that contains the origin
(b) Open half plane not containing the origin
(c) Whole $x y$-plane except the points lying on the line $2 x+y=5$
(d) None ofthese
7. Objective function of a LPP is
(a) a constraint
(b) a function to be optimized
(c)arelationbetweenthevariables(d)noneofthese
8. Themaximumvalue of $Z=4 x+2 y$ subjected tothe Constraints $2 x+3 y \leq 18, x+y \geq 10 ; x y \geq 0$ is
(a) 320
(b) 300
(c) 230
(d) none of these
9. The optimal value of the objective function is attained at the points :
(a) Given the intersection of inequations with the axes only
(b) Given by intersection of inequations with X-axis only
(c) Given by corner points of the feasible region
(d) None of these.
10. If the constraints in a linear programming problem are changed:
(a) The problem is to be re-evaluated
(b) Solution is not defined
(c) The objective function has to be modified
(d) The change in constraints is ignored
11. Which of the following statements is correct?
(a) Every LPP admits an optimal solution
(b)A LP P admits unique optimal solution
(c) If a LP P admits two optimal solution solutions, it has aninfinite number of optimal solutions
(d) Thesetofallfeasiblesolutionsof aLPP isafiniteset.
12.The feasible solution of a LPP belongs to
(a) First and second quadrants
(b) First and third quadrants.
(c) Second quadrant
(d) Only firstquadrant.
13. The value of objective function is maximum under linear constraints
(a) At the centre of feasible region
(b) At $(0,0)$
(c) At any vertex of feasible region
(d) The vertex which is at maximum distance from $(0,0)$
14. Which of the term is not used in a linear programming problem :
(a) Slackinequation
(b) Objectivefunction
(c) Concaveregion
(d) Feasible Region
15. A linear programming of linear functions deals with:
(a) Minimizing (b)Optimizing (c) Maximizing (d) None
16. By graphical method, the solution of linear programming problem

Maximize: $\quad Z=3 x+5 y$
Subjectto: $3 x+2 y \leq 18, x \leq 4, y \leq 6$ and $x, y \geq 0$, is (a) $x=2$
$, y=0, Z=6$
(b) $x=2, y=6, z=36$
(c) $x=4, y=3, Z=27$ (d) $X=4, y=6, Z=42$
17. Maximum value of the objective function $Z=4 x+3 y$ subject to the constraints
$3 x+2 y \leq 160,5 x+2 y \geq 200, x+2 y \geq 80, x y \geq 0$ is
(a) 320
(b) 300
(c) 230
(d) none ofthese
18. The point at which the maximum value of $x+y$, subject to the

Constraints $x+2 y \leq 70,2 x+y \leq 95, x, y \geq 0$ is obtained, is
(a) $(30,25)$
$\begin{array}{ll}\text { (b) }(20,35) & \text { (c) }(35,20)\end{array}$
(d) $(40,15)$
19. The corner points of the feasible region determined by the following

System Oflinearinequalities: $2 x+y \leq 10, x+3 y \leq 15$,
$x, y \geq 0$ are $(0,0),(5,0),(3,4)$ and $(0,5)$.
Let $Z=p x+q y$, where $p, q>0$. Condition on p and q so that the maximum of Z
occurs at both $(3,4)$ and $(0,5)$ is
(a) $p=q$ (b) $p=2 q$ (c) $p=3 q$ (d) $q=3 p$
20. Solution set of inequations $x-2 y \geq 0,2 x-y \leq-2, x \geq 0, \quad y \geq 0$ is
(a) Firstquadrant
(b) infinite
(c) Empty
(d) closed halfplane

CASE STUDY QUESTIONS

I. Asmallfirmmanufacturersgoldringsandchains. Thetotalnumberofringsandchainsmanufactured perdayisatmost 24 . it takes 1 hourtomakeringand 30 minutestomakeachain. The maximum number of hours available perdayis 16 .Iftheprofit on aringisRs. 300 andthat onachain is Rs.190. Firm is concerned about earning maximum profit on the number of $\operatorname{rings}(x)$ and chains (y) that have to be manufactured per day .
Using the above information give the answer of the following questions.
(i) The objective functionis
(a) $190 x+300 y$
(b) $300 x+190 y$
(c) $x+y$
(d) none of theabove
(ii) Formaximumprofitfirmhastomakethenumberofringsandchains- (a)
0,24
(b) 8,16
(c) 16,8
(d) 16,0
(ii) Corner points of feasible region are
(a) $(0,24)$
(b) $(8,16)$
(c) a\&b both
(d) $(12,0)$
(iv) Maximum profit earned by the firm is equal to
(a) 6440
(b) 4560
(c) 5000
(d) 5440
(v) Constraints of the above LPP are
(a) $x \leq 0$
(b) $2 x+y \leq 32$
(c) $y \geq 1$
(d) none of theabove

Il. Acompanystartedairlinesbusinessandforrunningbusinessitboughtaeroplanes.Nowanaeroplanecancarry maximum of200passengers.AprofitofRs.400ismadeoneachfirstclassticketandaprofitofRs.300ismadeoneach secondclassticket. The airline reserves at least 20 seats for first class.However, at least fourtimes as many passengers prefertotravel bysecond classthen by first class. Companywantstomakemaximumprofitbysellingticketsoffirst class (x) and second class (y).
Using the above information give the answer of the following questions.
(i) To get maximum profit how many first class tickets should be sold -
(a) 20
(b) 180
(c) 160
(d) 40
(ii) Difference between the maximum profit and minimum profit is equal to
(a) 8000
(b) 56000
(c)64000
(d) none of the above
(iii) Corner points of feasible region are
(a) $(20,180)$
(b) $(20,0)$
(c) $(40,0)$
(d) all theabove
(iv) Minimum profit is equal to
(a) 8000
(b) 6000
(c) 64000
(d) none of the above
(v) The objective functionis
(a) $400 x+300 y$
(b) $300 x+400 y$
(c) $x+y$
(d) none of theabove

ASSERTION AND REASON

Directions (Q. Nos. 1-5) Each of these questions contains two statements: Assertion (A) and Reason (R). Each of these questions also has four alternative choices, any one of which is the correct answer. You have to select one of the codes (a), (b). (c) and (d) given below.
(a) A is true, R is true: R is a correct explanation for A.
(b) A is true, R is true; R is not a correct explanation for A.
(c) A is true: R is false.
(d) A is false: R is true.

1. Assertion (A) Maximum value of $Z=11 x+7 y$, subject to constraints $2 x+y \leq 6, x \leq 2, x \geq 0, y \geq 0$ will be obtained at $(0,6)$. Reason (R)In a bounded feasible region, it always exist a maximum and minimum value.
2. Assertion (A)The linear programming problem, maximize $Z=2 x+3 y$
subject to constraints $x+y \leq 4, x \geq 0, y \geq 0$
It gives the maximum value of Z as 8 .
Reason (R)ToobtainmaximumvalueofZ, we need to comparevalueofZatallthecornerpointsofthefeasible region. 3. Assertion (A) Foran objective function $Z=4 x+3 y$, corner points are $(0,0),(25,0),(16,16)$ and $(0,24)$. Then optimal values are 112 and 0 respectively.

Reason (\mathbf{R}) Themaximum or minimum values of an objective function is known as optimal value of LPP. These values are obtained at corner points.
4. Assertion(A) Objectivefunction $Z=13 x-15 y$, isminimizedsubjecttoconstraints $x+y \leq 7,2 x-3 y+6 \geq 0, x \geq 0, y \geq 0$ occur at corner point $(0,2)$.
Reason (R) Ifthefeasibleregion ofthegivenLPP isbounded, thenthemaximumorminimumvaluesofanobjective function occur at corner points.
5. Assertion (A) MaximiseZ $=3 x+4 y$, subject to constraints: $x+y \leq 1_{\|} x \geq 0, y \geq 0$. Then maximum value of Z is 4 .
Reason (\mathbf{R}) If the shaded region is not bounded then maximum value cannot be determined.

ANSWERS
 RELATIONS AND FUNCTIONS

ANSWERS OF MCQ

1- Answer: (a) Reflexive
2- Answer: (a) f is one-one onto
3- Answer: (c) $\{0,3,4,5,-3,-4,-5\}$
4- Answer: (d) $(8,10) €$ R
5- Answer: (c) 24
6- Answer: (c) R is symmetric
7- Answer: (a) f is one-one and onto
8- Answer: (a) Ax B
9- Answer: (c) equivalence
10- Answer: (d) 5
11- Answer: (b) reflexive, transitive but not symmetric
12- Answer: (a) reflexive but not symmetric
13- Answer: (b) f(x) = x + 2
14- Answer: (d) Reflexive, transitive but not symmetric
15- Answer: (d) Equivalence relation
16- Answer: (c) many-one onto
17- Answer: (a) f is bijective
18- Answer: (c) one-one but not onto
19- Answer: (c) a bijection
20- Answer: (a) one-one but not onto
21- Answer: (b) one-one into
22- Answer: (a) a bijection

24- Answer/Explanation

Answer: (d) Explanation: (d), not reflexive, as $l_{1} R I_{2}$
$\Rightarrow I_{1} \perp l_{1}$ Not true
Symmetric, true as $I_{1} R I_{2} \Rightarrow I 2 R \mathrm{~h}$
Transitive, false as $I_{1} R l_{2}, l_{2} R I_{3}$
$\Rightarrow I_{1}| | I_{3} . I_{1} R I_{2}$.

25- Answer/Explanation

Answer: c
Explanation: (c), here $(1,2)$ e $R,(2,1) € R$, if transitive $(1,1)$ should belong to R.

26- Answer/Explanation

Answer: b

Explanation: (b), A relation R is an identity relation in set A if for all $a \in A,(a, a) \in R$.
27- Answer/Explanation
Answer: c
Explanation: (c), total injective mappings/functions $={ }^{4} \mathrm{P}_{3}=4!=24$.

ANSWER OF CASE STUDY BASED QUESTIONS

CASE STUDY-1
1-Sol. (a) reflexive Explanation. Clearly, $(1,1),(2,2),(3,3), \in R$. So, R is reflexive on A. Since, $(1,2) \in R$ but $(2,1)$ $\notin R$. So, R is not symmetric on A. Since, $(2,3), \in R$ and $(3,1) \in R$ but $(2,1) \notin R$. So, R is not transitive on A.
2- Sol. (b) Symmetric Explanation. Since, $(1,1),(2,2)$ and $(3,3)$ are not in R. So, R is not reflexive on A. Now, $(1,2) \in$ $R \Rightarrow(2,1) \in R$ and $(1,3) \in R \Rightarrow(3,1) \in R$. So, R is symmetric Clearly, $(1,2) \in R$ and $(2,1) \in R$ but $(1,1) \notin R$. So, R is not transitive.
3-Sol. (c) transitive Explanation. We have, $R=\{(x, y): y=x+5$ and $x<4\}$, where $x, y \in N$. $\therefore R=\{(1,6),(2,7),(3,8)\}$ Clearly, $(1,1),(2,2)$ etc. are not in R. So, R is not reflexive. Since, $(1,6) \in R$ but $(6,1) \notin R$. So, R is not symmetric. Since, $(1,6) \in R$ and there is not order pair in R which has 6 as the first element. Same is the case for $(2,7)$ and $(3,8)$. So, R is transitive.
CASE STUDY-2
1. (d) (X,Y) $\ddagger \mathrm{R}$
2. (a) both (X, W) and $(W, X) \in R$
3. (a) (F1,F2) $\in \mathrm{R}$, (F2,F3) $\in \mathrm{R}$ and ($\mathrm{F} 1, \mathrm{~F} 3) \in \mathrm{R}$
4. (c) Equivalence relation
5. (a) All those eligible voters who cast their votes
CASE STUDY-3
1. (a) Reflexive and transitive but not symmetric
2. (a) 6^{2}
3. (d) None of these three
4. (d) 2^{12}
5. (b) Reflexive and Transitive

CASE STUDY- 4

1-Sol. (a) R-\{2\}
Explanation. For $f(x)$ to be defined $x-2 \neq 0$ i.e. $x \neq 2 \therefore$ Domain of $f=R-\{2\}$
2-Sol. (b) R - \{1\}
Explanation. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then $\mathrm{y}=\boldsymbol{x} \mathbf{- 1 / x - 2}$
$\therefore \mathbf{x y}-\mathbf{2 y}=\mathbf{x}-\mathbf{1} \Rightarrow \mathbf{x y} \mathbf{- x}=\mathbf{2 y} \mathbf{- 1 \Rightarrow} \mathbf{x}=\mathbf{2 y}-1 / y-1$
Since, $x \in R-\{2\}$, therefore $y \neq 1$ Hence, range of $f=R-\{1\}$
3- Sol. (d) $x / x-2$
4- Sol. (a) One-one
Explanation. We have, $\mathrm{g}(\mathrm{x})=x / x-2$
Let $\mathrm{g}\left(\mathrm{x}_{1}\right)=\mathrm{g}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x} 1 / x 1-2=x 2 / x 2-2 \Rightarrow \mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{1}=\mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{2} \Rightarrow 2 \mathrm{x}_{1}=2 \mathrm{x}_{2} \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$ Thus, $g\left(x_{1}\right)=g\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$ Hence, $g(x)$ is one-one.

5- Sol. (c) $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$

ANSWERS OF ASSERTION AND REASON

1. a 2.a 3.a 4.c 5.c 6.a 7.b 8.c 9.c 10.d11.a 12.a 13.c 14.a 15.a 16.b 17.b 18. c 19.c 20. c

INVERSE TRIGONOMETRIC FUNCTION

ANSWERS OF MCQ

1-Answer- (a) 1
2-Answer- (d) $\pi / 3$
3-Answer- (b) 3 cos $^{-1} x$
4-Answer- (b) $-\pi / 3$
5-Answer- (d) None of these
6-Answer- (b) $\pi / 2$
7-Answer- (b) $\pi / 3$
8-Answer- (b) $\pi / 6$
9-Answer- (d) $-\pi / 4$
10-Answer- (a) $\pi / 4$
11- Answer- (b) $-\pi / 2 \leq y \leq \pi / 2$
12-Answer- (b) $5 \pi / 6$
13-Answer- (d) 1
14-Answer- (d) $-\pi / 6$
15-Answer- (a) $[0,1]$
16-Answer- (c) $[0, \pi]$
17-Answer- (d) $[-\pi / 2, \pi / 2]-[0]$
18-Answer- (b) 1

19-Answer- (a) $3 \pi / 5$
20-Answer - (a) $[0,1]$
21-Answer- (a) [1, 2]
22-Answer- (b) 2/5
23-Answer (c) 0.96
24-Answer- (a) $\pi / 2$
25-Answer- (b) $5 \pi / 6$
26-Answer- (d) 2a/1-a ${ }^{2}$
27-Answer- (c) 24/25
28-Answer- (d) - $-1 / 6$
29-Answer- (c) $5 \pi / 6$
30-Answer- (b) $\pi / 3$
31-Answer- (a) -п/3
32-Answer- (b) $\pi / 4$
33-Answer- (a) 5п/6
34-Answer- (a) $\pi / 6$
35-Answer- (b) $\pi / 3$
36-Answer- (b) $\pi / 3$
37-Answer- (a) 5п/6
38-Answer- (d) 0
39-Answer- (a) $\pi / 3$

ANSWER OF CASE STUDY BASED QUESTIONS

Case Study 1

1.a 2.c 3.a 4.a 5.c

Case Study 2
1 a) $1139.4 \mathrm{~km} \mathrm{2} \mathrm{c)} 1937 \mathrm{~km}$
3 b) 577.52 km
4 b) $\cot ^{-1} 1$
5 c) 1937 km
Case Study 3
1.a 2.d 3.a 4.c 5.b

ANSWERS OF ASSERTION AND REASON

1.d 2.a 3.d 4.c 5.a 6.c 7.a8.b9.a 10.C

MATRICES

ANSWERS OF MCQ

1. (d) 2 ,

Explanation: $\left[\begin{array}{lll}\mathrm{x} & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ -2 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0\end{array}\right]$
$\left.\begin{array}{cc}\mathrm{x}-2 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0\end{array}\right]$
$x-2=0$
$x=2$
2. (a) [28]
3. (b) Not possible to find
4. (d) 512,

Explanation: Total elements are 6 and each entry can be done in 2 ways.
Hence, total possibilities $=2^{9}=512$
5. (b) $\frac{\pi}{3}$

Explanation: $A+A^{\prime}=I$
$\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]+\left[\begin{array}{llll}-\sin \alpha & & \sin \alpha \\ 2 \cos \alpha & 0 \\ 0 & 2 \cos \alpha\end{array}\right]=\left[\begin{array}{lll}\cos \alpha & 1 & 0 \\ 0 & 1 & 0\end{array}\right]$
$2 \cos \alpha=1$
1
$\cos \alpha={ }_{2}-$
$\alpha=\frac{\pi}{3}$
6. (d) $A B=B A=1$
7. (a) square matrix
8. (a) Skew-symmetric matrix,

Explanation: $(\mathrm{AB}-\mathrm{BA})^{\prime}=(\mathrm{AB})^{\prime}-(\mathrm{BA})^{\prime}$
$=B^{\prime} A^{\prime}-A^{\prime} B^{\prime}$
$=\mathrm{BA}-\mathrm{AB}$
$=-(A B-B A)$
9. (b) Skew-symmetric matrix
10. (b) 4,

Explanation: $6 \rightarrow 1 \times 6,2 \times 3,3 \times 2,6 \times 1$.
11.(d) $\frac{16}{5}$
12. (d) 64,

Explanation: Total elements are 6 and each entry can be done in 2 ways. Hence, total possibilities $=2^{6}=64$.
13. (a) I

Explanation: $(I+A)^{2}-3 A=I^{2}+I A+A I+A^{2}-3 A=I+A+A+A-3 A=1$
14. (d) $\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
15. (a) allzeroes

Explanation: lin skew symmetric matrix, $a_{i j}=-a_{j i}$
$\Rightarrow a_{i i}=-a_{i i} \Rightarrow 2 a_{i i}=0$
$\Rightarrow a_{i i}=0$, i.e. diagonal elements are zeroes.
16. (b) $x=y$

Explanation: $\left[\begin{array}{ll}y & 0\end{array}\right]=\left[\begin{array}{ll}x & 0\end{array}\right] \Rightarrow x=y$
17. (c) a zero matrix of order $n \times n$

Explanation: $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{j},} \mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{j}} \mathrm{and}_{\mathrm{aii}}=0$
18. (c) $F(x+y)$

Explanation: [${ }^{\operatorname{Cos} \mathrm{x}}$

$\sin x]=[\cos (x+y)$
$\sin (x+y)]$
$-\sin x$
$\cos x \quad-\sin x$
$\cos x \quad-\sin (x+y)$
$\cos (\mathrm{x}+\mathrm{y})$
19. (c) $\left[\begin{array}{cc}\frac{1}{2} & -1 \\ \frac{1}{2} & 0\end{array}\right]$
20.(c)।

$$
\begin{array}{lllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}
$$

Explanation: $A^{2}=\left[\begin{array}{lllllll}0 & & 1 & 0\end{array}\right]\left[\begin{array}{lllllll}0 & & 1 & 0\end{array}\right]=\left[\begin{array}{lllll}0 & & 1 & 0\end{array}\right]=\mathrm{I}$
$A^{6}=\left(a^{2}\right)^{3}=1$
21.(c) diagonal matrix

Explanation: $\mathrm{A}^{2}-5 \mathrm{a}-7 \mathrm{I}=[3$
-14 0
$\left.\begin{array}{llll} & 1\end{array}\right]\left[\begin{array}{llll}3 & 1 \\ -1 & 2^{3}-1 & 2^{2} & -1\end{array} 2^{3} \quad 0-7\left[\begin{array}{lll}1 & 0 \\ & 0 & 1\end{array}\right]\right.$
$=\left[\begin{array}{cc} & \\ 0 & -14\end{array}\right]$
22. (c) 6

Explanation: $18 \rightarrow 1 \times 18,2 \times 9,3 \times 6,6 \times 3,9 \times 2,18 \times 1$.
23. (d) $n \times m$
24. (d) none ofthese
25. (d) 1

Explanation: $\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]=k\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]-2\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left.\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]=\left[\begin{array}{rc}3 \mathrm{k}-2 & -2 \\ 4 & -2 \mathrm{k}-2\end{array}\right]$

$$
3 k-2=1
$$

Hence, $k=1$

ANSWER OF CASE STUDY BASED QUESTIONS

1. (a) (iii) ₹ 46,000
(b) (ii) ₹ 53,000
(c) (iv) ₹ 31,000
(d) (i) (₹ 15,000, ₹ 17,000)
(e) (iii) ₹ 32,000
2. (a)(iii)
(b) (i) ${ }^{1}$
(c) $(\mathrm{ii}){ }^{-2}$

16
(d) $\left.\begin{array}{ll}-4 & -6 \\ -4 & -4\end{array}\right]$
(d) (iii)[
(e) (iii) $\left[\begin{array}{ll}\overline{8}^{6} & 0 \\ 2 & 10\end{array}\right]$
3. (a) (i) $A+B$
(b) (i) 10000
(c) (ii) $A-B$
(d) (i) ₹ 100 , ₹ 200 and ₹ 120
(e) (ii) ₹ 1000 , ₹ 600 , ₹ 200

4. (a) | 40 | 30 | 50 |
| ---: | ---: | :---: |
| (ii) $[20$ | 80 | $10]$ |
| | 40 | 60 |

(b) (iv) Number of USB type ' C ' $=5$ Produced by company $=1$
(c) (ii) 360
(d) (i) 670
(e) (i) 10

ANSWERS OF ASSERTION AND REASON

1. i) A
ii) C
iii) A
iv) D
v) B
vi) C
vii) A
viii) A

DETERMINANTS

ANSWERS OF MCQ

1. (c) 100

Explanation: $\quad \mathrm{A}(\mathrm{ad} \mathrm{A})=|\mathrm{A}|$
$|A| I=10 I$
$|A|=10$
Now, $|\operatorname{adj} \mathrm{A}|=|A|^{\mathrm{n}-1}$
So, $|\operatorname{adj} \mathrm{A}|=\mid \mathrm{A}^{\mid-1}$
\mid adj $A \mid=10^{2}=100$
2. (d) $\Delta-\Delta_{1}=0$
Explanation: $\Delta_{1}=\left|\mathrm{x}^{2} \begin{array}{ccc}\mathrm{Ax} & \mathrm{By} & \mathrm{Cz} \\ & & \mathrm{y}^{2} \\ \mathrm{z}^{2}\end{array}\right|$
$C_{1} \rightarrow x C_{1} C_{2} \rightarrow y C_{2}$ and $C_{3} \rightarrow z C_{3}$ and divide by $x y z$

Ax^{2}	x^{3}	1
$\mathrm{D}_{1}=\mid \mathrm{By}^{2}$	y^{3}	$1 \mid$
Cz^{2}	z^{3}	1

$\Delta_{1}=\triangle$
3. (b) $K^{2}|A|$
4. (d) $a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31}$

Explanation: asvalue ofdeterminantissumoftheproductofelementsofanyrowandcolumnandtheir respective cofactor
5. (d) $(A+B)^{-1}=A^{-1}+B^{-1}$
6. (a) $|A|^{3}$

Explanation: as $|A . \operatorname{adj} A|=|A|^{n}$, where A is matrix of order $n \times n$.
7. (c) $k^{3}|A|$
8. (b) -1

Explanation: we have $\left\lvert\, \begin{array}{lll}\mathrm{b} & \begin{array}{lll}\mathrm{a}^{2} & 1+\mathrm{a}^{3} \\ b^{2} & 1+b^{3}\end{array}=(1+a b c)(a-b)(b-c)(c-a)=0 .\end{array}\right.$
Also $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} \Rightarrow 1+\mathrm{abc}=0$
$\Rightarrow a b c=-1$.
9. (c) 0
10. (b) 0
11. (c) -1
Explanation:As, $\left|\begin{array}{lll} & 2 & 3 \\ & & 2 \\ & 4 & \mathrm{x} \\ \mathrm{y}\end{array} \mathrm{x}\right|+3=0$

On expanding along first row,
$2(x-9 x)-3(x-4 x)+2(9 x-4 x)+3=0 x=-1$
12. (d) -7000

Explanation: $\mathrm{As}, \mathrm{AB}=\left[^{200}\right.$
$\left.A B=\left[\begin{array}{ccc}10000+100 & 8000+150 & 2\end{array}\right] 3\right]\left[\begin{array}{lll}20 & 40\end{array}\right]$
$A B=\left[\begin{array}{cc}10100 & 8150 \\ 504 & 406\end{array}\right]=4100600-4107600=-7000$
13. (c) a^{6}

Explanation: $\operatorname{as}, \operatorname{det}(A)=a^{3} \operatorname{det}(a d j$ A)
$=\left(a^{3}\right)^{3-1}=a^{6}$ 14. (c) 9
Explanation: as, $|\operatorname{adj} \mathrm{A}|=|A|^{3-1}$
15. (c) ± 6

$2 x^{2}-40=18+14$
$x= \pm 6$
16. (b) 3

Explanation: as, $\Delta={ }^{1}\left|\begin{array}{cccc} & \mathrm{X}_{1} & \mathrm{X}_{1} & 1 \\ \overline{2} & 2 & \mathrm{y}_{2} & 1\end{array}\right|$

| 1^{-3} | 0 | 1 | x_{3} | y_{3} | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$9={ }_{2} \wp \begin{array}{lll} & & 0 \\ & 1\end{array}$
$\mathrm{k}=3$
17. (d) $(A+B)^{-1}=B^{-1}+A^{-1}$
18. (d) [

19. (b)

20.(b) Symmetric matrix
21. (a) Every skew-symmetric matrix of odd order is non-singular
22. (a) $-\left(3 A^{2}+2 A+5 I\right)$
23.(a) $m \times n$
24.(d) 8
25. (d) 3×3

ANSWER OF CASE STUDY BASED QUESTIONS

1. (a) (ii) $\quad x-y=50,2 x+y=550$
(b) (i) $\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right][y]^{X}=\left[\begin{array}{c}50 \\ 550\end{array}\right]$
(c) (iii) 200 m
(d) (i) 150 m
(e) (ii) 30000 Sqm
2. (a) (i) ₹2
(b) (iv) ₹ 17
(c) (i) ₹ 7
(d) (iv) ₹20
(e) (iii) ₹22
3. (i) (d) 12

Explanation: $\mathrm{as}, \mathrm{x}+\mathrm{y}+\mathrm{z}=122 \mathrm{x}+3 \mathrm{y}+$
$3 z=33$
$x-2 y+z=0$
$\begin{array}{lllll}1 & 1 & 1 & x & 12\end{array}$
$A=\left[\begin{array}{lll}2 & 3 & 3\end{array}\right], X=[y], B=X=[33]$
$|A|=3$

$X=A^{-1} B=\begin{array}{crcc}\frac{1}{2}[1 & -3 & 0 & 0 \\ \left.\frac{9}{3}\right][33] & 12 & 3 \\ -7 & 3 & 1 & 0\end{array}$
$x=3, y=4, z=5$
$x+y+z=12$
(ii) (b) $-z$
(iii) (c) 5
(iv) (c) 11
(v) (b) 43
4. (i)(b) 900

Explanation: as, $3 x+2 y+z=16004 x+y+3 z=$ 2300
$x+y+z=900$
$\begin{array}{lllll}3 & 2 & 1 & x & 1600\end{array}$
$A=\left[\begin{array}{lll}4 & 1 & 3\end{array}\right], X=[y], B=X=[2300]$
$\begin{array}{llllll}1 & 1 & 1 & z & 900\end{array}$
$|A|=-5$
$A^{-1}={ }^{1}{ }_{|A|}^{|A|}$ ad $A=\begin{array}{r}1 \\ -5\end{array} \begin{array}{rrr}-2 & -1 & 5 \\ -1 & 2 & -5] \\ 3 & -1 & -5\end{array}$
$X=A^{-1} B=\begin{array}{rrrl}\frac{1}{-5}\left[\begin{array}{rrl}-2 & -1 & 5 \\ -1 & 2 & -5][2300] \\ 3 & -1 & -5\end{array}\right)[300 & 200 \\ & 400\end{array}$
$x=200, y=300, z=400$
$x+y+z=900$
(ii) (b) 2300
(iii) (c) 300
(iv) (d) 1300
(v) (a) 100

ANSWERS OF ASSERTION AND REASON

$\begin{array}{lllllll}\text { 1. i) } B & \text { ii) } B & \text { iii) } A & \text { iv) } A & \text { v) } A & \text { vi) } D & \text { vii) } C\end{array}$ viii) C

CONTINUITY AND DIFFERENTIABILITY

ANSWERS OF MCQ

Q1 D Q2 C Q3 A Q4 A Q5 A Q6.A Q7.D Q8.B Q9 A Q10.D Q11.C Q12.D Q13. B Q14. C Q15.B Q16. A Q17.C Q18A Q19 B Q20.C Q21.D Q22.A Q23.B Q24.A Q25.A Q26.C Q27.C Q28.A Q29.C Q30 D

ANSWER OF CASE STUDY BASED QUESTIONS

CASE STUDY-1

1. b
2. B
3. C
4. D
5. B

CASE STUDY-2

1. C
2. C
3. C
4. D
5. B

CASE STUDY-3

$\begin{array}{llll}\text { 1. } C & \text { 2. } D & \text { 3. } A & \text { 4. B }\end{array}$ CASE STUDY-4

1. c
2. $D \quad 3 . A$
3. B
4. d

ANSWERS OF ASSERTION AND REASON

1. d 2. A 3.C 4. A 5. D
2. A 7. d
3. A 9
4. D 10. D
5. E 12. A

APPLICATION OF DERIVATIVES

ANSWERS OF MCQ

1. a 2. b 3. a 4. $a \quad$ 5. a 6. b 7. d 8. a 9. a 10. a 11. b 12. d 13. $a \quad$ 14. a 15. a 16. a
 32. a 33. d 34. $b \quad 35 . c \quad 36 . c$ 37. b 38. b 39. c 40. c 41.b 42. a 43. c

ANSWER OF CASE STUDY BASED QUESTIONS

1.(i)a, (ii)b, (iii)c, (iv)b, (v)c	2. (i) b, (ii)a, (iii)a, (iv)c, (v)
3.(i)a, (ii)a,(iii)b, (iv)a, (v)b	4. (i)a, (ii)b, (iii)a, (iv)c, (v)b
5.(i)a, (ii) (b), (iii) a, (iv) c, (v)a	6. (i)c, (ii)d, (iii)b, (iv)c, (v)b

ANSWERS OF ASSERTION AND REASON

1.A,2.B,3.C,4.C,5.A,6.A,7.C,8.D,9.A,10.A,11.A,12.A, 13.A,14.D, 15.A

LINEAR PROGRAMMING

ANSWERS OF MCQ

1-a, 2-c, 3-c, 4-d, 5-b, 6-b, 7-b, 8-d,9-c, 10-a, $11-\mathrm{c}, 12-\mathrm{d} \quad 13-\mathrm{c}, 14-\mathrm{c}, 15-\mathrm{b}, 16-\mathrm{b}, 17-\mathrm{a}, 18-\mathrm{d}$, $19-d(\operatorname{Max} z=3 p+4 q$ and $\max z=5 q$ whichgives $q=3 p), 20-c$. (There will be no common region)

ANSWER OF CASE STUDY BASED QUESTIONS

1.(i) b
(ii) b
II. (i) d
(ii) a
(iii) c
(iv) d
(v) b
(iii) d
(iv) a
(v) a

ANSWERS OF ASSERTION AND REASON

$\begin{array}{llll}\text { 1.b } & \text { 2. } d \quad \text { 3.a } & \text { 4.a }\end{array}$

तत् त्वं पूषन् अपावृणु

केंद्रीय विद्यालय संगठन रायपुर संभाग
KENDDRIYA VIDYALAYA SANGAIHAN W RAIPURREGIOIN
Website -ntips.t/roralpur.Kvs.gov.in
Email-ackvsroraipur@gmail.com

